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Annual number of wildfires, 2025

Number of wildfires. The 2026 data is incomplete and was last updated 09 January 2026.
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In 2025, over
1400 megatons
of carbon were
released from
wildland fires
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Data source: Global Wildfire Information System (2025)
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Limitations of Current Methods

e Smoke emissions are chemically complex,
making sampling method selection challenging

e Filters primarily capture particulate-phase
constituents

e Gas-phase organics are often
underrepresented despite health and SOA
relevance

e Thermal desorption enables direct capture of
free-phase organic compounds

e Multibed TD applications in smoke
characterization remain limited




Thermal Desorption

Thermal desorption is a modern
tool for gas and particle-phase
VOC sampling

“Brita filter for air”

A wide range of sorbent
materials are available

Sorbents can be combined to
form multibed tubes

Multibed tubes expand analyte
retention and compound
coverage







Sorbent type:

The porous polymer
sorbent Tenax® TA
is the most popular
sorbent for TD

Sorbent strength:

The weaker the
sorbent, the better
it is at analysing
heavier and reactive
molecules.

Water retention:

Weaker sorbents
are generally more
hydrophobic, making
them a better choice
for sampling humid
environments

Porous
polymers

Graphitised
carbon blacks
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molecular sieves
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Zeolite
molecular sieves

Strong sorbents
are usually used for
monitoring small,
volatile analytes.

highly hydrophilic.

Conversely, strong
) sorbents tend to be
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Two-Dimensional Gas
Chromatography

e GCxGC offers several
advantages over
conventional GC-MS

e Primarily, a reduction
in peak coelution
through second
dimension separation

e Though limited work
has been done utilizing
GCxGC for smoke
characterization
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1D: 5% non polar phenyl column
(20 m x 180 um x 0.18 pm)
BPX-50 50% diphenyl semi-polar
column (5 m x 250 um x 0.25 pm)
5 °C/ min up to 260 °C
SepSolve INSIGHT flow modulator:
4 second modulation
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Sorbent Bed
Optimization
Six unique sorbent
bed combinations
were compared
using a VOC/PAH
standard mixture

Qutline
Conditioning Desorption
Optimization Optimization

Spiked thermal Desorption

desorption tubes

were conditioned at

varying method
parameters

parameters were
manipulated to

optimize recovery
and peak area
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Long-Term
Storage Test

Spiked Tubes were
sedled and stored
for set periods to
investigate analyte
loss over time




Liquid Standard
Mixture

® 41 unigue compounds from two
standard mixtures a certified
reference material PAH mix and
an EPA 502/524.2 VOC Mix were
combined for this study

® Analytes were separated into
five unigue compound classes

e R|: 600 - 2100
e log Kow: 1.7 to 5.16

e Henry's Law constants from

9.45x107° 10 0.01177
atm-m’/mol

Second dimension retention time (s)
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Halogenated Aliphatic
Mono Aromatic

4 PaH

W Poly Aromatic

A TEX

12 Cl4 Cl6

C18
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Tube Spiking

Markes Calibration Solution Loading Rig: CSLR
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Sorbent Tube
Optimization

® Six sorbent bed types were
compared at five concentration
levels:

® (10, 5, 2.5, 1.25, 0.625 ng/mL)
® Tube comparison was based on
three metrics:
1. Recovery

2. Linearity

3. Limits of Detection

Sorbent and

Optimum

Tube acking order SEES | SR Carbon Maximum
Tube . P 9 Material Sorbent | retention Temperature
Information (front to back of (mg) strength Range (Cx- Stability (°C)
tube) 9 9 cy) Y
Graphitised .
Carbopack B e bl - Medium Cs5-Cqg 400
CarboTrap 217:
A ]
Commercial Carbonised
Carboxen 1000 arbonise - Strong C2-Cs 400
molecular sieve
] Proprieta
B Emissions: roprietary - - - - -
: information
Commercial
C Ll TA.: Tenax TA Porous polymer 200 Weak Cs-Cao 350
Commercial
Tenax TA Porous polymer 150 Weak Cs-C3o 350
D In-house
Graphitised .
Carbopack X S - 150 Medium C3-Csg 400
Tenax TA Porous polymer 150 Weak Ce-Cao 350
E In-house
Graphitised .
Carbopack B S 150 Medium C5-C1a 400
Tenax Ta Porous polymer 75 Weak Ce-Cao 350
Graphitised .
F In-house Carbopack X e — 75 Medium Cs5-Cia 400
Carbopack B Slrzjgiiiled 75 Medium @Gy 400

carbon black

16




Mean Area + 5D
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Calibration Curve - 1,4-Dichlorobenzene
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0.50 1

0.25 4

0.00 1

CarbTrap217 (R? = 0.998)
MaterialEmissions (R* = 0.997)
Tenax (R? = 0.956)
TenaxCarbX (R? = 0.995)
TenaxCarbB (R” = 0.988)
TripplePack (R? = 0.987)

4 6
Concentration (ppm)
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Mean Area + SD

le7

Calibration Curve - Naphthalene

CarbTrap217 (R? = 0.999)
MaterialEmissions (R? = 0.978)
Tenax (R* = 0.966)
TenaxCarbX (R?* = 0.998)
TenaxCarbB (R? = 0.978)
TripplePack (R? = 0.997)

4 6
Concentration (ppm)

I 1 Sorbent Tube Optimization
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Sorbent Bed Type 10 (pg/ml) Sorbent Bed Type 0.625 (ug/ml)

C D
1,2-Dichloropropane X %] 55.9% 100.0%

Dibromomethane

Bromadichloromethane
«is-1,3-Dichloropropene
Toluene
Tetrachloroethylene
Dibromachleromethane
1,2-Dibromoethane
1.1.1,2Tetrachloroethane

6 30.4%
Ethylbenzene K b | 100.0% p ] 53.5%

pim-Xylene 3% 3 70.9% g 52.4%
oXylene 45.1%

Cumene | ean | 97.2% 100.0% g 4 28.8%
1.1.2,2-Tetrachlaroethane 68.9% 100.0% ) 2 60.1%

123 ichlorapropane 65.% 4047 ‘ 9.4%

Bromobenzene % 69.3% 72.1% 38.7%
Propylbenzene 68.8% T 1000% 50.3%
4-Chlorotoluene 63.8% L 52.2%
2-Chlaratoluene 5. 67.5% 58.3%
1,3,5-Trimethylbenzene z X 62.4%
tert-Butylbenzene 59.9%

1,2,4-Trimethylbenzene 9 32.8% 53.3% 100.0% % | 826% | 41.1%
sec-Butylbenzene X 83.9% 100.0% | 51.0%

1,2-Dichlorebenzene ! 67.4% 100.0% 49.2%
100.0%

pCymene - me | 6745

1,3-Dichlorebenzene 5 71.3% 100.0% 35.9%
1.4-Dichlorobenzene 2 66.9% 100.0% 71.8% 57.3% 48.1%

Butylbenzene 69.4% 100.0% 60.0% 56.0%
1.2 4 chiorobenzene % woow | eaew P assw | 3%
Naphihalens e - mo | 57.%
Hexachloro-1,3-butadiene 100.0% - e3%n |
1.2,3Trichlorobenzene 66.1% .1 72.3% 100.0%
1-Methylnaphthalene 60.6% i 68.4% 100.0%
2-Methylnaphthalene 64.6% 62.5% 100.0% -~ 82% |

67.1%

Fluorene X 54.3% 100.0% 80.5% 99.1%
phenanthrene A . 51.5% 100.0% 97.0% | 47.2%
Anthracene . 44.4% 84.8% 100.0% b 49.4%
Fluoranthene 47.8% 92.3% 100.0%
Pyrene . 48.2% 83.2% 100.0%

Acenaphthylene 59.5% 100.0% 86.5%

Acenaphthene o 100.0% 54.4%
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Sorbent Tube
ptimization




02
Conditioning
Optimization

e To validate the selection of
conditioning parameters (time
and temperature), a factorial
study design was used

e For each factorial level, four
replicates were injected,
resulting in a total of 36
samples

® Results demonstrated that
decreases in conditioning time

19

and temperature did not
improve in artifact removal

Run Conditioning Time Conditioning Temp
(Hour) (°C)
1 3 (+) 290 (+)
2 3 (+) 270 (=)
3 3 (+) 250 (-)
4 2 (=) 290 (+)
5 2 (=) 270 (=)
6 2 (=) 250 (-)
7 1(-) 290 (+)
8 1(-) 270 (=)
9 1(-) 250 (-)




Desorb Time Desorb Trap Flow
Run (min) Temperature  (mL/min)
(°C)

1 20 (+) 310 (+) 60 (+)
2 15 (=) 300 (=) 50 (=)
3 10 (-) 290 (-) 40 (-)
4 10 (-) 310 (+) 50 (=)
5 10 (-) 300 (=) 50 (=)
6 10 (-) 310 (+) 60 (+)
7 15 (=) 290 (-) 50 (=)
8 15 (=) 300 (=) 60 (+)
9 15 (=) 310 (+) 40 (-)
10 20 (+) 290 (-) 60 (+)
11 20 (+) 300 (=) 40 ()
12 20 (+) 310 (+) 50 (=)
13 20 (+) 300 (=) 50 (=)
14 15 (=) 310 (+) 50 (=)
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03
Desorption
Method
Optimization

e Modified factorial study
design
e Manipulation of desorption

parameters had a negligible
impact on analyte recovery

e Concentration-dependent
variations were observed
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2.5 pg/ml

R1 R2 R3

. Halogenated Aliphatic . Mono Aromatic . PAH . Poly Aromatic - TEX
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04
Storage Stability Trial

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
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Area

Boxplot of 1,2,4-Trichlorobenzene Across Storage Durations

le7
1.8 L
1.7 4
l.ﬁ | i
o
- i
1.3 4
1.2 4
o
l.l T T T T T T
<O 3 3 Pl e o
o o @ o @ @
o B "‘.ﬁh ,,541 ‘541




Method
Validation

® 150g of white spruce
(Picea glauca) was
combusted

® One litre of emitted
smoke was sampled
at a flow rate of 100
mL/min

® Samples were
analysed on a TD-
GCxGC-ToFMS
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76.5cm (H)
10cm (D)
6 (L)

18.5cm (L)
36.25cm (W)
19.5cm (H)
13.08 (L)




GCxGC Chromatogram of Smoke Emissions




Second dimension retention time (s)
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Smoke Emissions Results

10 20 30 40
First dimension retention time (min)
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1606 peaks per sample

78% percent of peaks
ranged from C6 to
C14, with an average
secondary retention
time of 4 £ 0.74

19 of the 41 standard
compounds were
identified (all PAHs &
BTEX compounds)

Average concentration
of 4.56 yg/ml + 3.44




Summary

e Concentration dependent
variations in sorbent tube
selection

e Reduction of method
parameters

e Stable storage up to 35 days

e Multibed tubes proved very
effective at retaining smoke
emissions

e Significant advantages from
the use of GCxGC
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Questions?
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