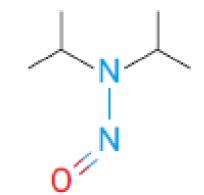
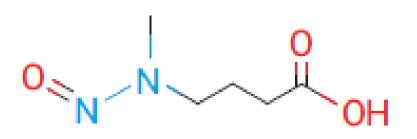

Nitrosamine Impurities Application Guide

Confidently Detect and Quantify Mutagenic Impurities in APIs and Drug Products



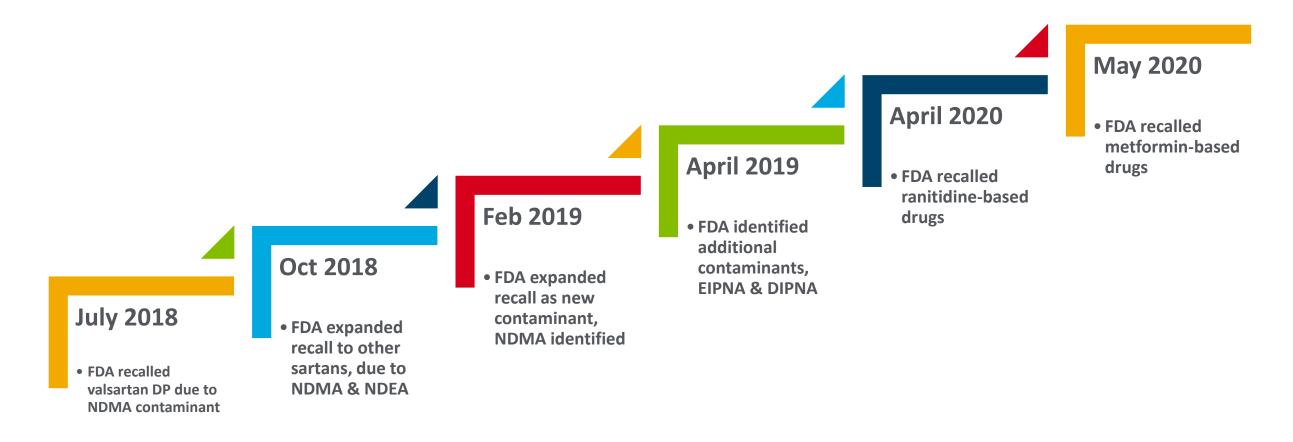

Introduction

Mutagenic impurities in APIs and drug products pose a significant risk to health and safety—even in small quantities—and thus are a major concern for drug makers. Mutagenic impurities can damage DNA, leading to mutations and potentially cancer.

Nitrosamines are formed by chemical reactions that occur during API manufacturing whether from starting materials, intermediates, reactants, reuse of solvents and by-products; they can form through degradation products generated during formulation or storage or from environmental contaminants. Recently, nitrosamines have been found in sartan drugs, a class of medications used to treat high blood pressure and heart failure, prompting recalls of angiotensin receptor blockers (ARBs)—valsartan, losartan, and irbesartan—which were contaminated with N-Nitrosodimethylamine (NDMA) and N-Nitrosodiethylamine (NDEA), two carcinogenic impurities. Since then, several other N-nitrosamines have also been identified and are being investigated by regulators: N-Nitrosodiispropylamine (NDBA), and N-Nitroso-N-methyl-4-aminobutyric acid (NMBA). Nitrosamines have now also been identified in ranitidine medications (which are used to treat heartburn and acid reflux) and metformin, an oral diabetes medication.

For detailed info, refer to: FDA Press Releases; EMA Press Releases

Diverse Pathways for Nitrosamine Formation


Regulatory agencies advise companies on steps to take to avoid nitrosamines in medicines.

Risky preparations must be tested for nitrosamine contamination via validated and appropriately sensitive analytical methods. Manufacturers must inform authorities of nitrosamine detection, irrespective of the amount detected. <u>Sartan-Based</u>

Nitrosamines in Recent News!

Efforts to address and control the presence of trace levels of mutagenic impurities is of special concern to global regulators. As a result, US FDA and other regulatory agencies have taken steps to address the issue of mutagenic impurities in pharmaceuticals.

Detection and quantification of these trace nitrosamines in APIs and drug products can be challenging and necessitates the use of advanced and sensitive tools to meet regulatory requirements. Agilent offers reliable systems and solutions that not only fulfill FDA directives, but also meet and exceed FDA's established regulatory requirements to help pharmaceutical customers identify and quantify trace (ppb) nitrosamine and other mutagenic impurities confidently.

<u>Sartan-Based</u>

Sartan-Based Drugs

- Valsartan, losartan, irbesartan and other "-sartan" drugs are a class of medicines known as angiotensin II receptor blocker (ARBs) used to treat high blood pressure and heart failure
- Regulatory agencies reported that some generic versions of the angiotensin II receptor blocker (ARB) medicines contain nitrosamine impurities that don't meet the agency's safety standards
- Regulatory agencies (for e.g. including US Food and Drug administration (US FDA)) published guidance on the detection and quantification of nitrosamine impurities in sartan-based drugs

US FDA

methods to provide options for regulators and industry to detect NDM.

and NDEA impuriti

The links below are to FDA-published testing methods to provide options for regulators and industry to detect nitrosamine impurities in ARB drug substances and drug products. These methods should be validated by the user if the resulting data are used to support a required quality assessment of the API or drug product, or if the results are used in a regulatory submission.

- Combined headspace method: a GC/MS method that allows determination of both N-Nitrosodimethylamine (NDMA) and N-Nitrosodiethylamine (NDEA) simultaneously
- Combined direct injection method: a GC-MS/MS method that allows for determination of both NDMA and NDEA simultaneously
- Direct injection GC-MS method: a method that can detect NDMA, NDEA, N-Nitrosodiisopropylamine (NDIPA), N-Nitrosoethylisopropylamine (NEIPA), and N-nitrosodibutylamine (NDBA)
- Headspace GC-MS method: a method that can detect NDMA, NDEA, NDIPA, and NEIPA
- LC-HRMS method: a method that can detect NDMA, NDEA, NEIPA, NDIPA, NDBA, and N-Nitroso-N-methyl-4-aminobutyric acid (NMBA)
- RapidFire-MS/MS method: a method that can detect NEIPA, NDIPA, NDBA, and NMBA. We do not recommend using this method to detect NDMA or NDEA because it is less sensitive to those impurities.
- The LC-HRMS and RapidFire-MS/MS methods are the first methods FDA has posted for detecting NMBA. The European Directorate for the Quality of Medicines (EDQM) has also published methods to detect NDMA and NDEA C. FDA has not validated EDQM's methods.

https://www.fda.gov/media/13 1868/download

Council of Europe

Methods for determination of nitrosamines in sartans

1.0

.

- The Official Medicines Control Laboratories (OMCLs) of the General European OMCL Network (GEON) are involved in investigations and actions to add issues related to the detection of N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and other concerned nitrosamines (e.g., NMBA – N-N methyl-4-aminobutyric acid) in valsartan and related sartans. The Network has developed methods for the specific testing of nitrosamines in sartans o of different analytical principles.
- The Irish OMCL in the Public Analyst's Laboratory in Galway (PALG), the French OMCL at the ANSM site in Montpellier, the German OMCL at the "Chemi Veterinar-Untersuchungsamt (CVUA) Karlsruhe", the OMCL at Swissmedic and the German OMCL at the "Landesamt für Gesundheit und Lebensmittels (LGL)" in Bavaria established different methods on behalf of the Network.
- These methods are publicly available and can be accessed below:
- This LGL method is a LC-MS/MS (AB Sciex Qtrap) method for the quantitative determination of NMBA in losartan drug substances.
- This LGL method is a GC-MS screening method for the determination of NDMA and NDEA in sartan drug substances (valsartan, inbesartan, losartan candesartan, olmesartan).
- This LGL method is based on LC-MS/MS (similar to the CVUA Karlsruhe method) and suitable for the determination of NDMA and NDEA in irbesart and losartan drug substances and products.

https://www.edqm.eu/en/news/omcls-releasethree-methods-determination-ndma-sartans

Health Canada

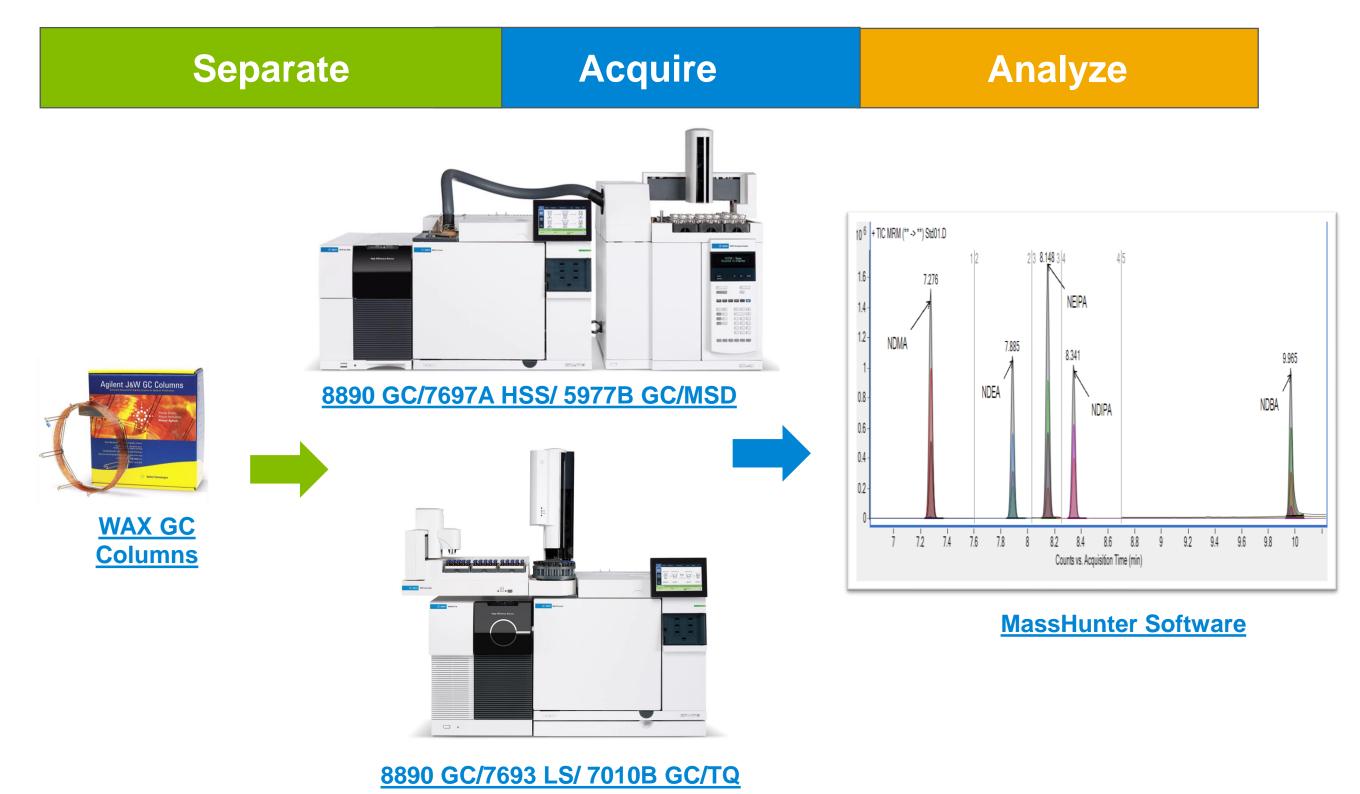
Canada.ca > Departments and agencies > Health Canada > Drugs and health products

MENU 🗸

> Compliance and enforcement: Drug and health products > Information by Health Product > Drugs

Impurities found in certain angiotensin II receptor blocker (ARB) products, also known as sartans

https://healthycanadians.gc.ca/recall-alert-rappelavis/hc-sc/2020/72963a-eng.php


Taiwan FDA

1	Method of Test for Western Medicines as Adulterants in Chinese Medicines and Foods	2020-03-23
2	Method of Test for Nitrosamines in Medicines - Multiple Analysis	2019-12-12
3	Determination of N-Nitrosodimethylamine and N- Nitrosodiethylamine in Medicines	2019-12-12
4	Determination of N-Nitroso-N-Methyl-4-Aminobutyric Acid in Sartan Drug Substances and Drug Products	2019-04-10
_		

https://www.fda.gov.tw/ENG/siteList.aspx?sid=10360

Sartan-Based Drugs Mutagenic Impurity Analysis GC/MS Workflow Solution

Sartan-Based Drugs

Agilent GC/MS Solution for Analysis of Nitrosamines

Ту	Typical Configuration				
	Add 8890 G	C and ALS with one o	f the MS Options		
0	G3540A	Agilent 8890 GC System	112, 201, 313 (for TQ only)		
U	G4513A	7693A Autoinjector	NO OPT		
	G4514A	7693A Tray, 150 Vial	NO OPT		
a		MS Option 1			
Ĕ	G7012BA	7010B Quadrupole MS/MS El Bundle	#010 (optional),245		
		MS Option 2			
ğ	G7079BA	5977B High Efficiency Source (HES) El GC/MSD	#010 (optional),245		
th	G4557A	7697A Headspace Sampler, 111 Vial capacity	NO OPT		
GC with SQ	G3449A	8890/8860 Transfer Line Interface Accessory	NO OPT		
Q		MS Option 3			
- SSH	G7077BA	5977B InertPlus El GC/MSD	#010 (optional),245		
I	G4557A	7697A Headspace Sampler, 111 Vial capacity	NO OPT		
	G3449A	8890/8860 Transfer Line Interface Accessory	NO OPT		

Application Area		
Analytes	NDMA, NDEA, NEIPA, NDIPA, NDBA	
Matrices	Sartan drug substances and drug products	
Customers	Pharmaceuticals and contract labs	

Columns and supplies

Columns J&W VF-WAXms GC Column, 30 m, 0.25 mm, 1.00 µm, 7 inch cage (<u>CP9206</u>)

GC Vials and Caps: Screw top MS analyzed vial kit (5190-2277)

Syringe Filter Paper: Nylon, 0.45 µm (5190-5091)

GC Inlet Liner: Ultra Inert, splitless, single taper, glass wool (5190-2293)

Highlights – GC/MS/MS approaches

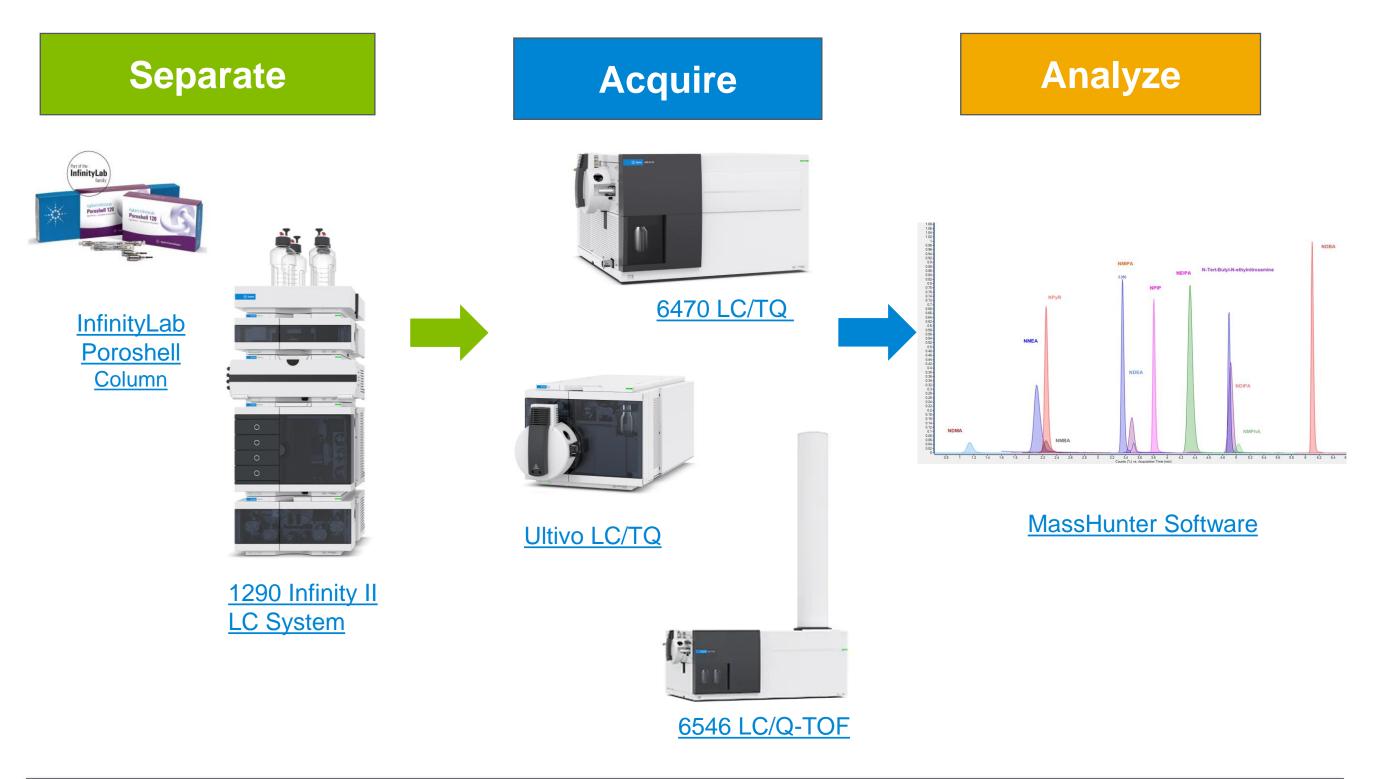
Cost effective, easy to use

Quick implementation in labs

Optimized methods and RTL based MRMs

□ More API can be used (100 mg/mL or more) for sample prep.

□ Most APIs are insoluble in Dichloromethane, so it doesn't overload column


Easy sample preparation

All sartans can be analyzed by a single GC/MS/MS method. No method modification because of API or formulation. Lower detection limits can be achieved

Sartan-Based Drugs Mutagenic Impurity Analysis LC/MS Workflow Solution

Confirmatory analysis of nitrosamine impurities in sartan-based drug substances and drug products are presented per the US FDA published method here

Sartan-Based Drugs Agilent LC/MS Solution for Nitrosamines Analyses

Typical LC Configuration

Agilent 1290 Infinity II High-Speed Pump (G7120A)

Agilent 1290 Infinity II Multisampler (G7167B)

Agilent 1290 Infinity II Multicolumn Thermostat (G7116B)

Agilent 1290 Infinity II Variable Wavelength Detector (G7114B)

<u>1290 Infinity II</u> LC System

Application Area		
Analytes	NDMA, NDEA, NEIPA, NDIPA, NDBA and NMBA	
Matrices	Sartan drug substances	
Customers Pharmaceuticals and contract labs		

Columns and supplies

Columns: Varies for each sartan drug

HPLC Vials and Caps: Vial, screw 2mL Amber p/n 5182-0716 and Cap p/n 5183-2077

Syringe Filter Paper: 5190-5261 (PVDF, 13mm 0.2 µm)

Highlights – LC/MS/MS approaches

Easy to operate

Quick implementation in labs

Optimized methods

□ Sample size used as per US FDA recommendations

Easy sample preparation

Valsartan API elutes after all nitrosamines, so diverter valve programmed accordingly

Ultivo LC/TQ

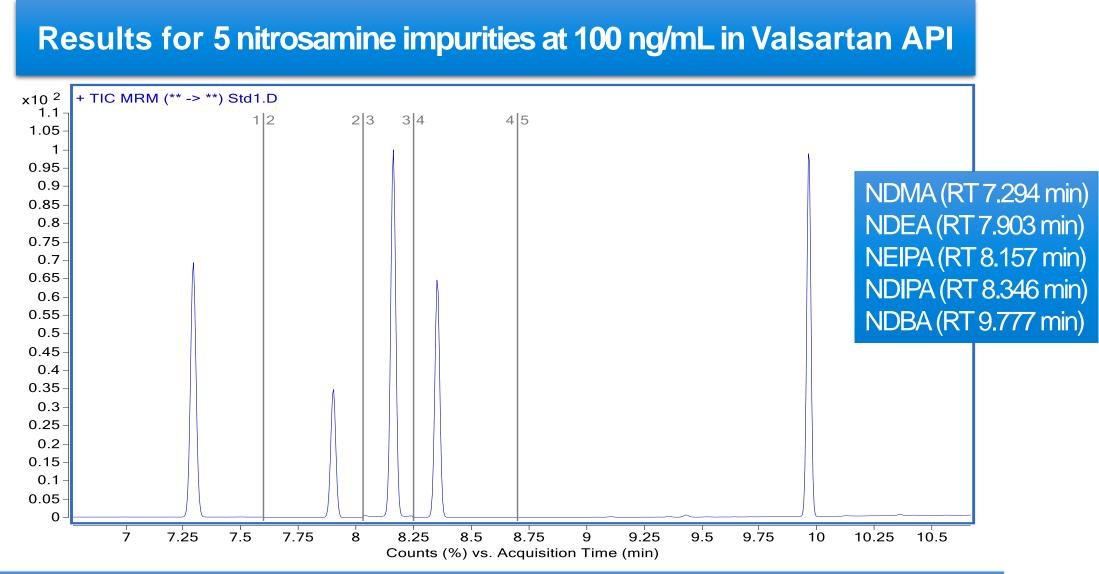
Back to Introduction

GC/MS Method for Analysis

Instrument Method				
ALS	GC	MS		
Injection Volume: 2µL	Carrier Gas: He 1mL/min	El Mode		
Parameter	Value			
MMI injection mode	Pulsed splitless: 12.285 psi until 0.5 min			
Inlet temperature	250 °C			
Oven temperature program	$20^{\circ}C/min$ to $200^{\circ}C$ (0 min)			
Total run time	12.33 min			
MS transfer line temperature	250 °C			

Parameter	Value		
Source temperature	250 °C		
Quadrupole			
temperature	Q1 and Q2 = 150 °C		
MS1 and MS2			
resolution	All compounds Unit		
Collision gas flow	Nitrogen at 1.5 mL/min,		
Quenching gas flow	Helium at 4 mL/min		
	Start time: 6.5 min NDMA	74 \rightarrow 44, CE 15, dwell 150 ms 74 \rightarrow 42, CE 20, dwell 50 ms NDMA:C13-d ₆ 82 \rightarrow 48, CE 20, dwell 100 ms	
Quant./qual.	Start time: 7.60 min NDEA	102 →85, CE 10 V, dwell 150 ms 102 →56, CE 18 V, dwell 150 ms	
transitions (FDA method)	Start time: 8.03 min NEIPA	116 →99, CE 10 V, dwell 150 ms 71 →56, CE 10 V, dwell 150 ms	
	Start time: 8.25 min NDIPA	130 →88, CE 10 V, dwell 150 ms 130 →42, CE 10 V, dwell 150 ms	
	Start time: 8.70 min NDBA	158 →99, CE 10 V, dwell 150 ms 84 →56, CE 22 V, dwell 150 ms	

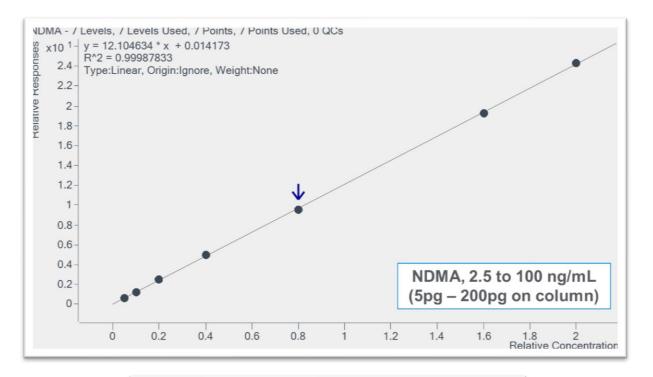
Sample Preparation For API Add 5 mL NDMA-C13-D6 Vortex for 1 min Filter 1 mL followed by supernatant 500 mg of Drug substance centrifugation through a 0.45 µm filter paper for 2 min at in a GC vial Dichloromethan 4000 rpm e (50 ng/mL For Drug Product Add 5 mL NDMA-C13-D6 Vortex for 1 min Filter 0.5 mL followed by supernatant through a 0.45 standard centrifugation um filter paper prepared in for 2 min at 500 mg of API 4000 rpm in a GC vial Dichloromethan e (50 ng/mL Calibrations


2.5 ng/ml, 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml, 80 ng/ml and 100 ng/ml each prepared in Dichloromethane containing 50 ng/mL of NDMA –C13-D6

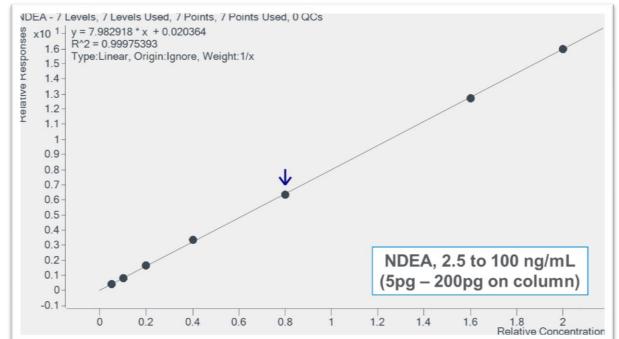
System Suitability

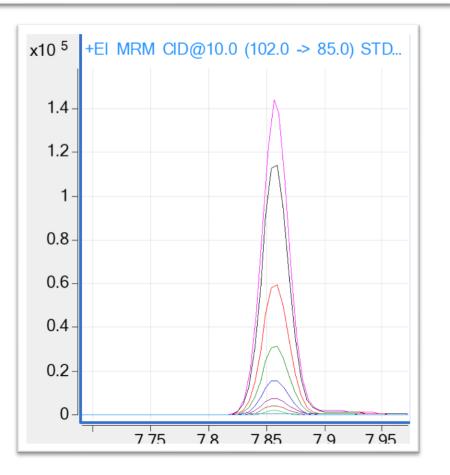
The coefficient of determination (R2) of the linear calibration curve should be \geq 0.998. The S/N ratio of the 5 ng/mL linearity standard should be \geq 10. % RSD of six replicate injections of the 40 ng/mL standard should be \leq 5

Back to Introduction

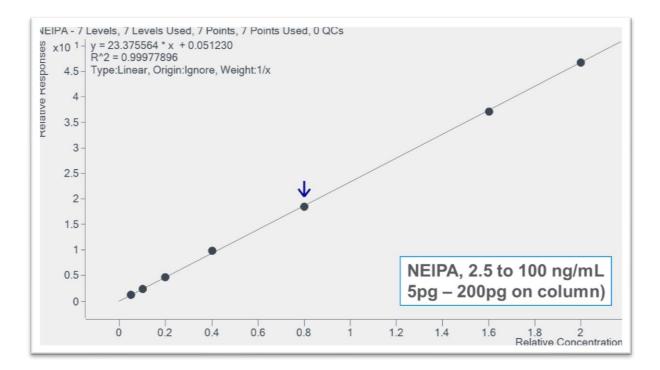


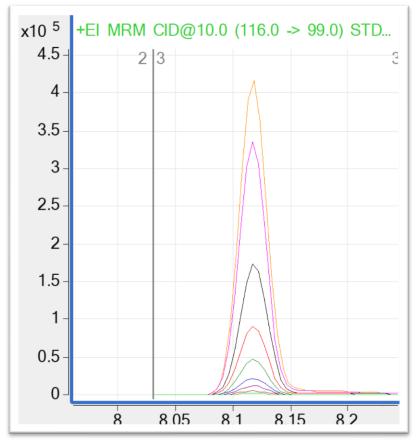

Benefits Agilent GC/TQ		
Optimized methods Optimized method for both API and Formulation Compatible with stringent FDA regulations 		
 Scalable application Best precision = best ion ratios = best quant results Rugged ion source design Retention Time Locking for reproducible methods over time and between labs 		
Sample prep	 Sample preparation as per FDA guidelines Easy sample preparation 	
 Automated tuning, easy to use instrument. Efficient Quant review with MassHunter Data Integrity 		

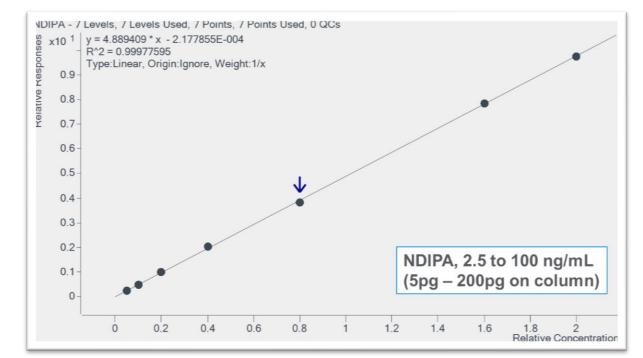


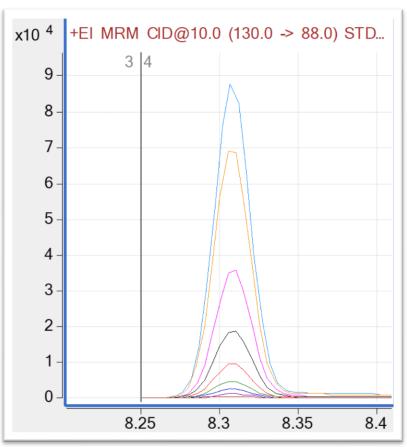

Calibration Curves

Valsartan

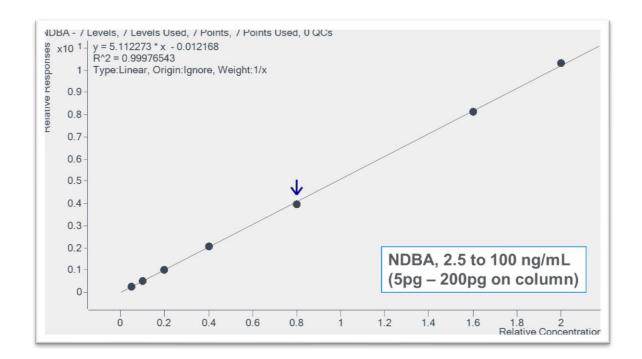


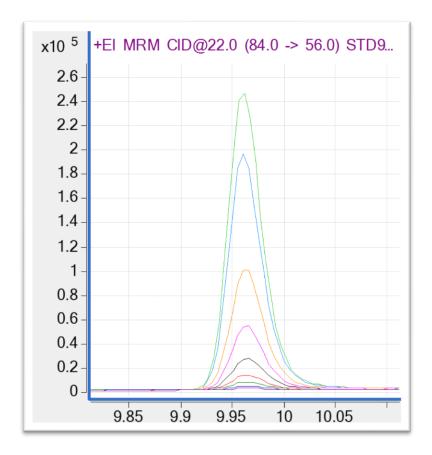




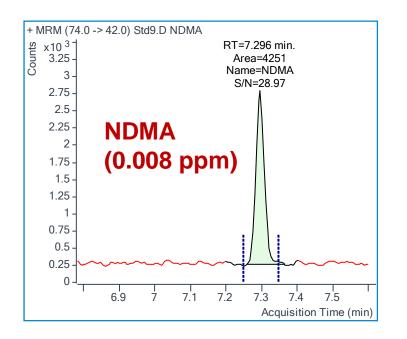


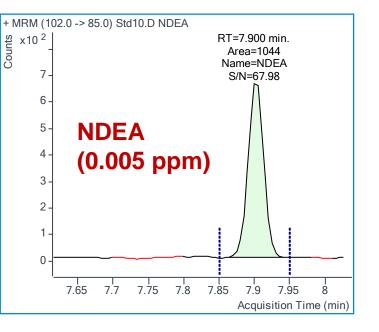
Valsartan Calibration Curves

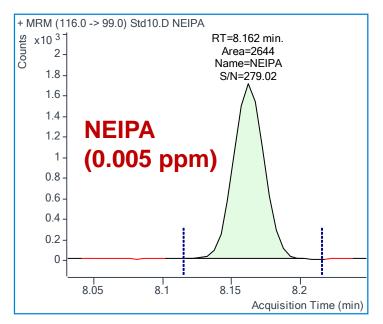


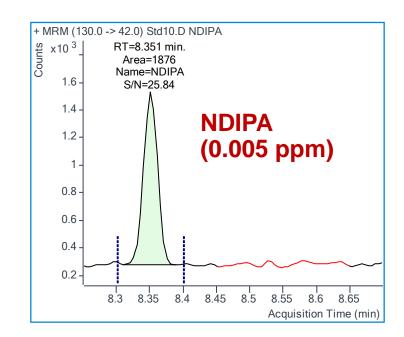


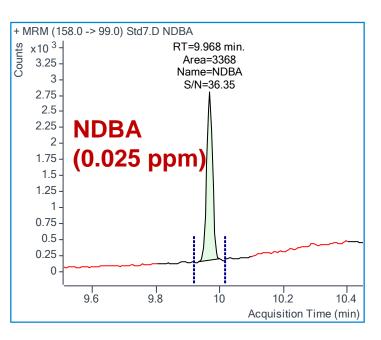
Valsartan Calibration Curves

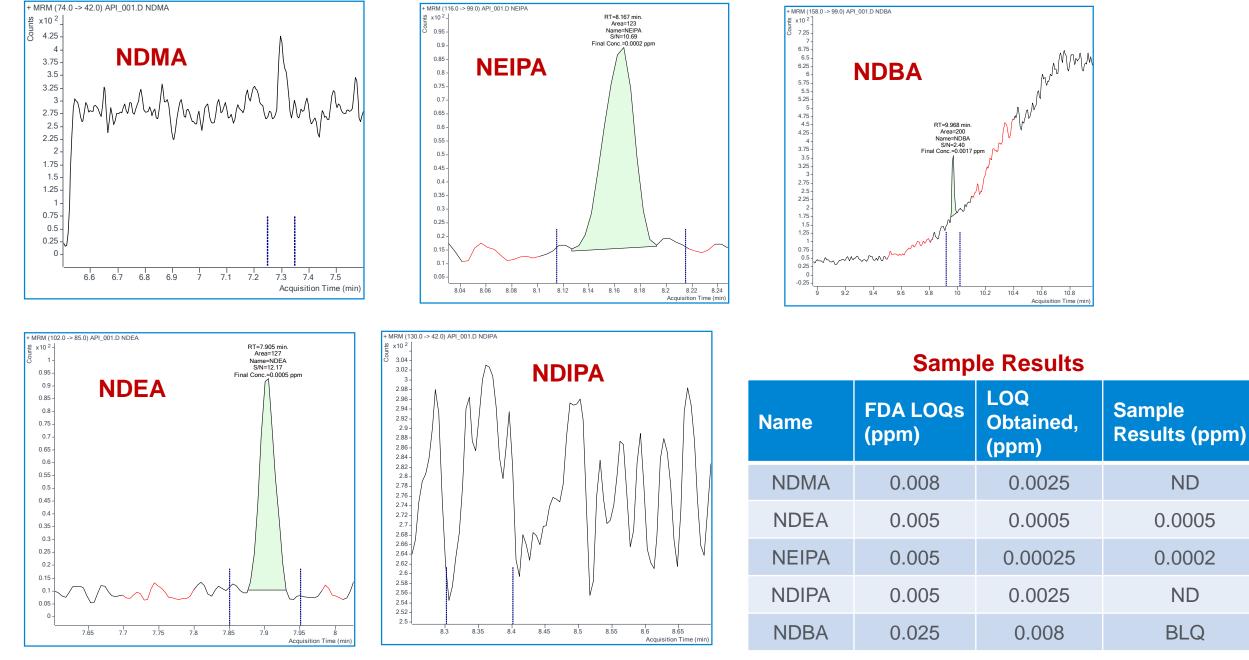






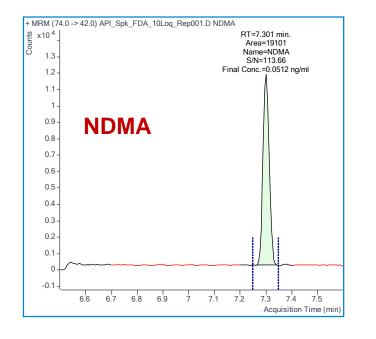


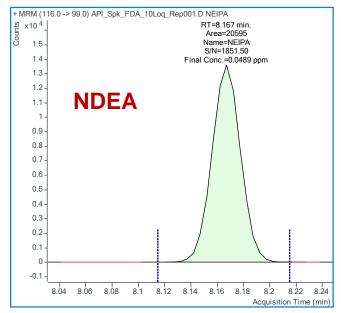

Response at FDA Specified LOQ

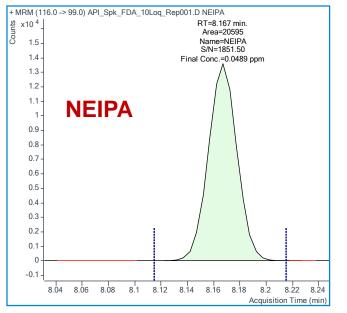


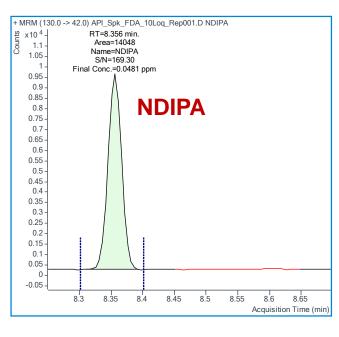
S/N at FDA LOQ

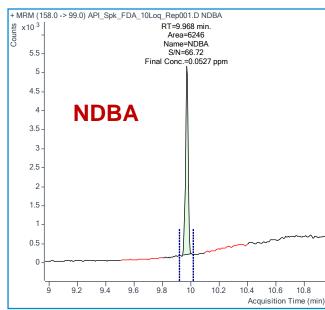
Name	S/N
NDMA	28.97
NDEA	67.98
NEIPA	279.02
NDIPA	25.84
NDBA	36.35

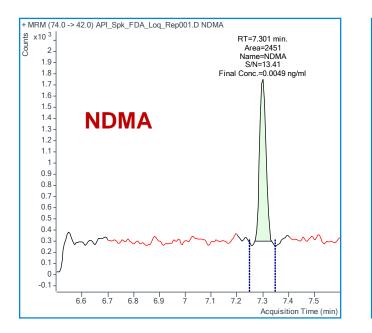

Sample Results for Valsartan API, Extraction 1

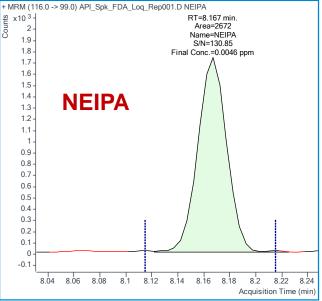


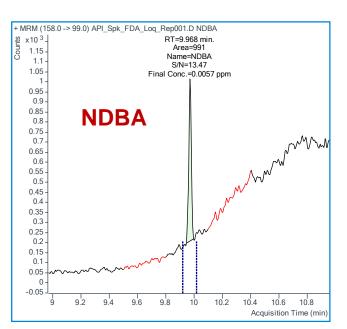

BLQ = Below Limit of Quantitation



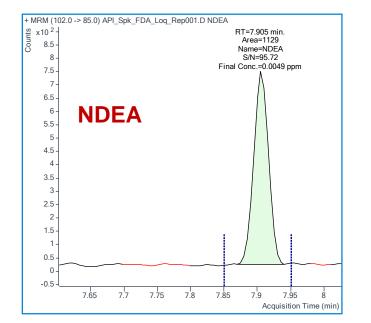

Representative Recovery % of Nitrosamine Impurities in Valsartan at 0.05 ppm

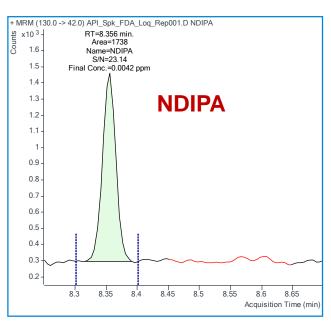



Sample Recovery (0.05 ppm)


Name	Spiking Level (ppm)	Sample Results (ppm)	Recovery (%)
NDMA	0.05	0.051	102
NDEA	0.05	0.049	98
NEIPA	0.05	0.049	98
NDIPA	0.05	0.048	96
NDBA	0.05	0.053	106

Representative Recovery % of Nitrosamine Impurities in Valsartan at 0.005 ppm





Sample Recovery (0.005 ppm)

Name	Spiking Level (ppm)	Sample Results (ppm)	Recovery (%)
NDMA	0.005	0.0049	98
NDEA	0.005	0.0049	98
NEIPA	0.005	0.0046	92
NDIPA	0.005	0.0042	84
NDBA	0.005	0.0057	114

LC/MS Method for Analysis

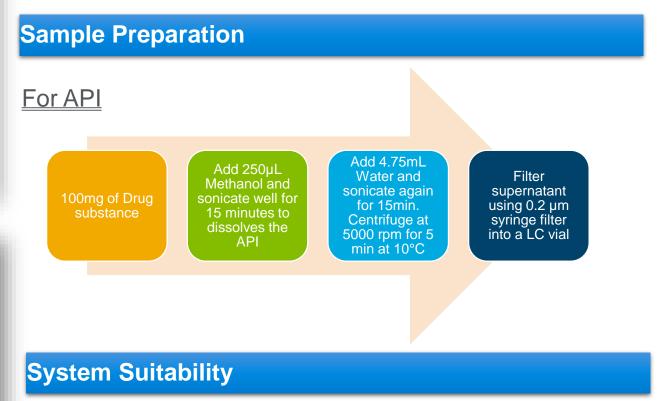
Instrument Method

Chromatographic Condition:		
Mobile Phase A:	0.2 % Formic Acid in Water	
Mobile Phase B:	Methanol	
Sample Diluent:	Water: Methanol 95:5	
Flow Rate:	0.5mL/min	
Injection Volume:	20µL	
Column Used:	Infinity Lab Poroshell HPH C18 3 x 150mm 4µm (P/N 693970-502T)	
Column Temperature:	40°C	

Gradient Program:

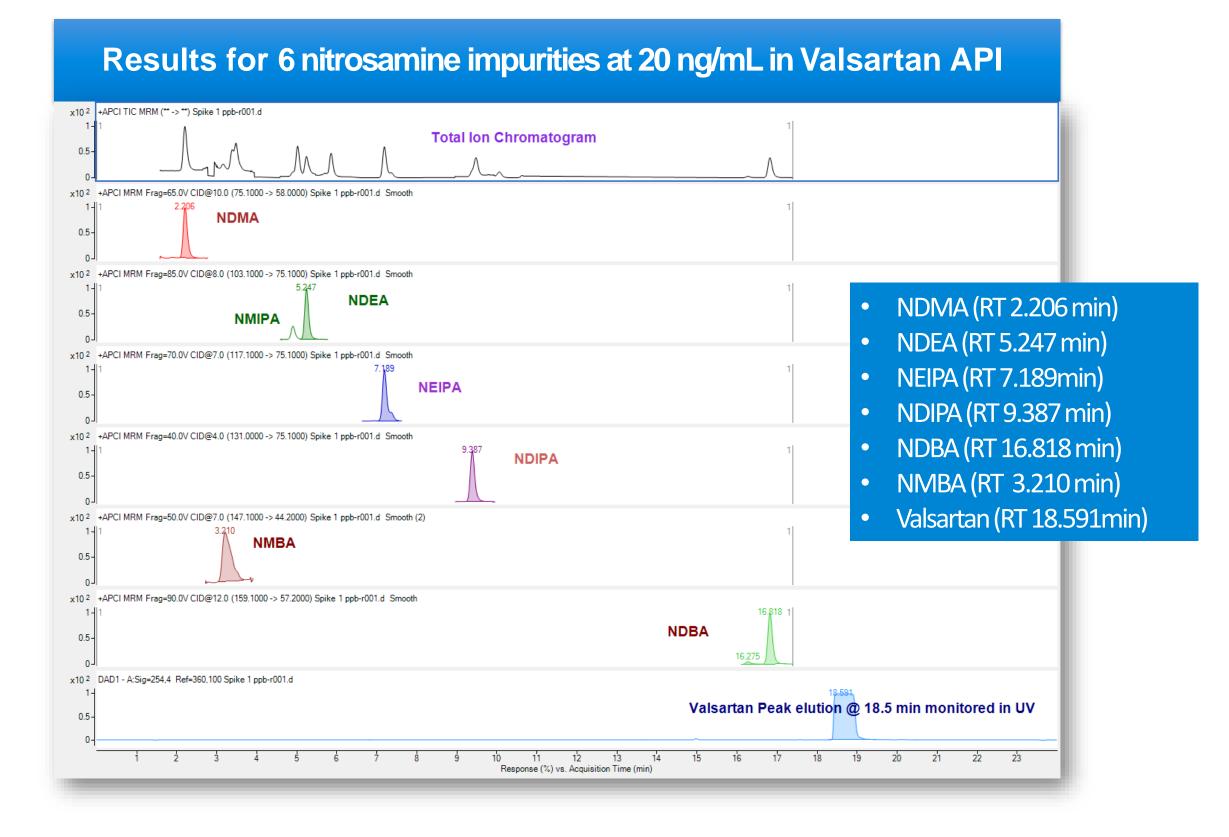
Time (Min)	Mobile Phase A	Mobile Phase B	Flow Rate(mL/min)
0	95	5	0.5
5	70	30	0.5
18	30	70	0.4
19	5	95	0.5
22	5	95	0.5
22.1	95	5	0.5
24	95	5	0.5

Table1: Chromatographic Gradient Program for analysis


Post Run Time: 1 minutes

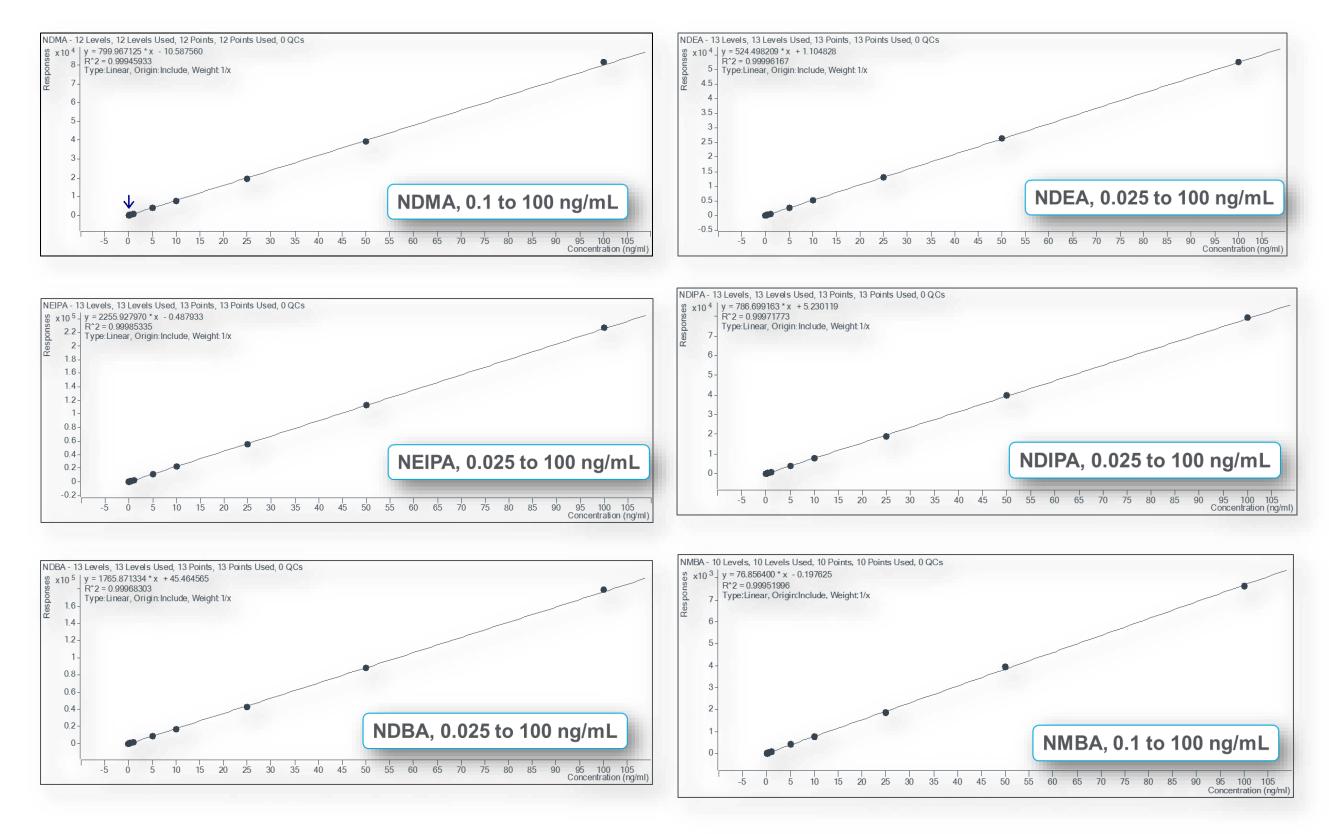
Instrument	Agilent 6470 /Ultivo Triple Quadrupole mass spectrometer
Ion source	Atmospheric Pressure Chemical Ionization (APCI)
MS/MS mode	MRM
Ion mode	Positive
Drying gas temperature	300 °C
Drying gas flow	6 L/min
Nebulizer pressure	55 psi
APCI heater	350 °C
APCI needle positive	4 μA
Capillary voltage, positive	3000 V
MS1/MS2 resolution	0.7/0.7 (unit/unit)

Compound	Precursor Ion (m/z)	Product Ion (m/z)	Retention Time(min)	Retention Time Window (Min)	Fragmentor (V)	Collision Energy(V)	Polarity
NDEA	103.1	75.1	3.484	1.5	85	8	+
NDEA	103.1	47.1	3.484	1.5	85	16	+
NDMA	75.1	58	1.143	1.24	65	10	+
NDMA	75.1	43.1	1.143	1.24	65	17	+
NMBA	147.1	44.2	2.247	1.2	50	7	+
NMBA	147.1	87.2	2.247	1.2	50	7	+
NEIPA	117.1	75.1	4.325	1.0	70	7	+
NEIPA	117.1	47.1	4.325	1.0	70	15	+
NDIPA	131.1	89.1	4.916	1.0	50	5	+
NDIPA	131.1	43.1	4.916	1.0	50	7	+
NDBA	159.1	57.2	6.096	1.0	70	7	+
NDBA	159.1	41.1	6.096	1.0	70	24	+


Calibrations

0.1 ng/mL to 100 ng/mL

The coefficient of determination (R^2) of the linear calibration curve should be ≥ 0.990 . The S/N ratio of the 1 ng/mL linearity standard should be ≥ 10 . % RSD of six replicate injections of the 1 ng/mL standard should be ≤ 10



Back to Introduction

Valsartan Calibration Curves

Representative Recovery % of Nitrosamine Impurities

@ 1ng/mL (0.05ppm) concentration using 20mg/mL sample size

S.No.	Nitrosamine Impurities	Average Recovery Percentage
1	NDMA	110
2	NMBA	117
3	NDEA	108
4	NEIPA	103
5	NDIPA	104
6	NDBA	101

Note: Use of corresponding internal standards for each nitrosamines may further help in any recovery issue.

Benefits of Agilent LC/TQ					
Optimized methods	 Optimized method for valsartan drug substance Detect and quantify nitrosamine impurities limits per published FDA regulatory testing method guidance 				
Scalable application	 Best precision = best ion ratios = best quant results; Rugged ion source design 				
Sample prep	 Sample preparation as per EDQM guidelines Easy sample preparation 				
Time and costs	 Automated tuning, easy to use instrument Efficient quant review with MassHunter Data Integrity 				

Losartan

GC/MS Method for Analysis

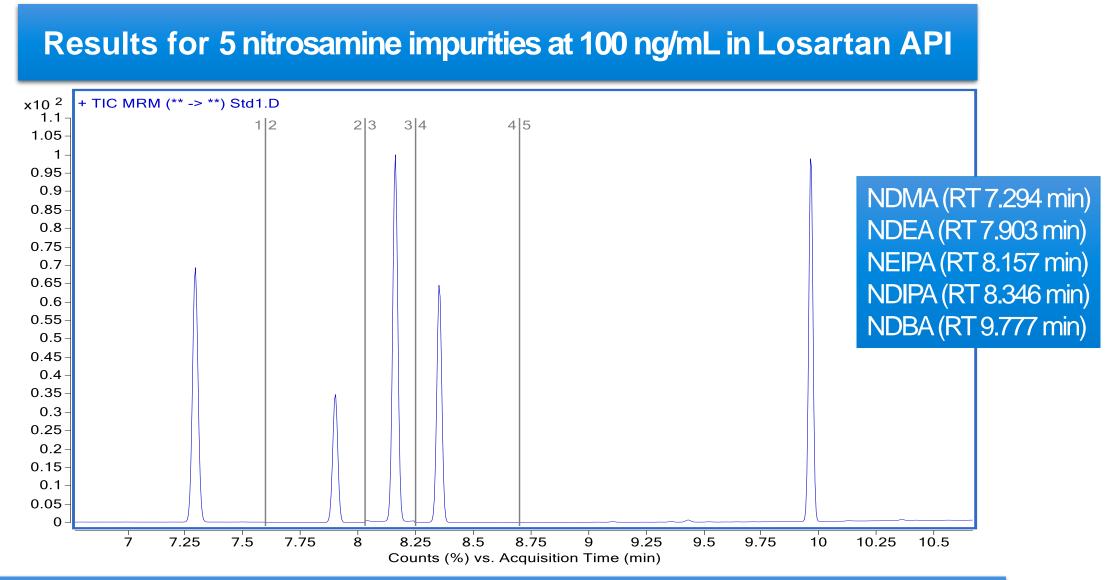
Instrument Method	k			
ALS	GC	MS		
Injection Volume: 2µL	Carrier Gas: He 1mL/min	El Mode		
Parameter	Value			
MMI injection mode	Pulsed splitless: 12.285 psi until 0.5 min			
Inlet temperature	250 °C			
Oven temperature program	40 °C (0.5 min) 20 °C/min to 200 °C (0 min) 60 °C/min to 250 °C (3 min)			
Total run time	12.33 min			
MS transfer line temperature	250 °C			
Parameter Value				

Parameter	Value				
Source temperature	250 °C				
Quadrupole					
temperature	Q1 and Q2 = 150 °C				
MS1 and MS2					
resolution	All compounds Unit				
Collision gas flow	Nitrogen at 1.5 mL/min,				
Quenching gas flow	Helium at 4 mL/min				
	Start time: 6.5 min NDMA	74 \rightarrow 44, CE 15, dwell 150 ms 74 \rightarrow 42, CE 20, dwell 50 ms NDMA:C13-d ₆ 82 \rightarrow 48, CE 20, dwell 100 ms			
Quant./qual.	Start time: 7.60 min NDEA	102 →85, CE 10 V, dwell 150 ms 102 →56, CE 18 V, dwell 150 ms			
transitions (FDA method)	Start time: 8.03 min NEIPA	116 →99, CE 10 V, dwell 150 ms 71 →56, CE 10 V, dwell 150 ms			
	Start time: 8.25 min NDIPA	130 →88, CE 10 V, dwell 150 ms 130 →42, CE 10 V, dwell 150 ms			
	Start time: 8.70 min NDBA	158 →99, CE 10 V, dwell 150 ms 84 →56, CE 22 V, dwell 150 ms			

Sample Preparation For API Add 5 mL NDMA-C13-D6 Vortex for 1 min Filter 1 mL followed by supernatant 500 mg of Drug substance through a 0.45 µm filter paper in a GC vial centrifugation for 2 min at Dichloromethan 4000 rpm e (50 ng/mL For Drug Product Add 5 mL NDMA-C13-D6 Vortex for 1 min Filter 0.5 mL followed by supernatant standard centrifugation through a 0.45 um filter paper prepared in for 2 min at 500 mg of API 4000 rpm in a GC vial Dichloromethan e (50 ng/mL

Calibrations

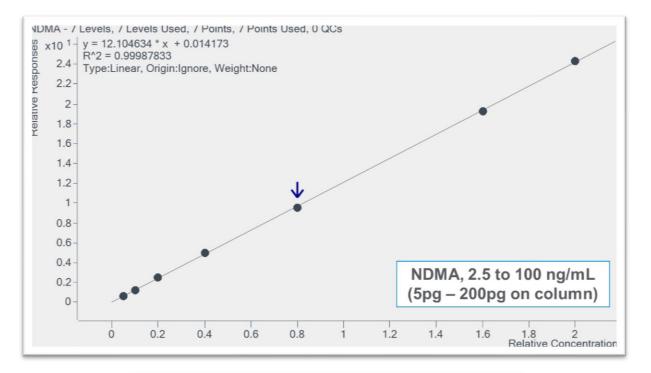
2.5 ng/ml, 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml, 80 ng/ml and 100 ng/ml each prepared in Dichloromethane containing 50 ng/mL of NDMA –C13-D6

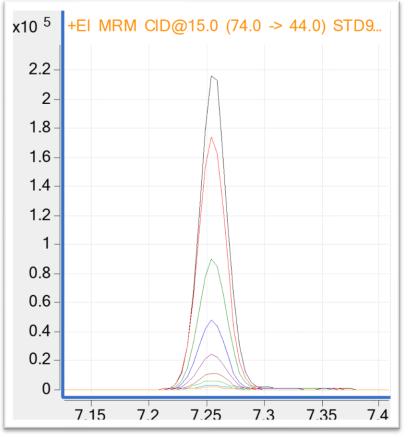

System Suitability

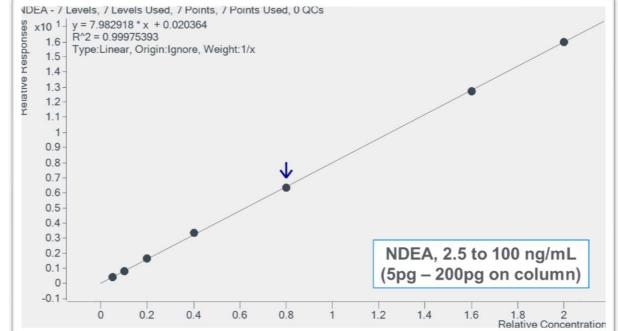
The coefficient of determination (R2) of the linear calibration curve should be \geq 0.998. The S/N ratio of the 5 ng/mL linearity standard should be \geq 10. % RSD of six replicate injections of the 40 ng/mL standard should be \leq 5

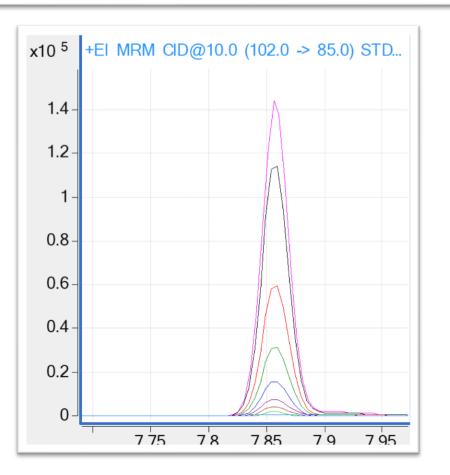
Back to Introduction

Losartan

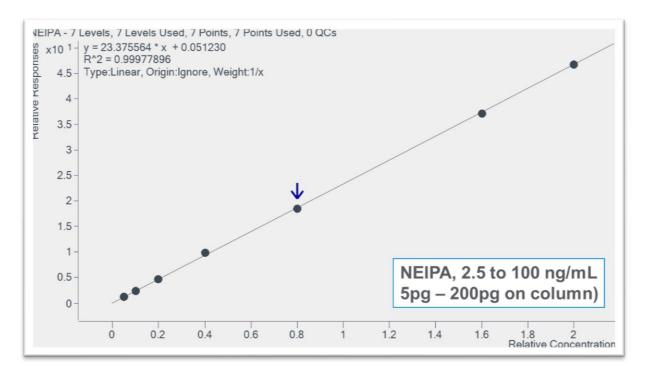


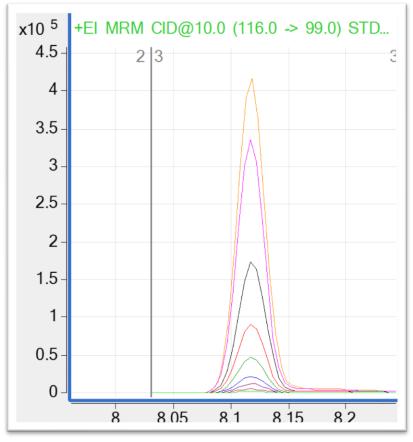

Benefits Agilent GC/TQ				
Optimized methods	 Optimized method for both API and Formulation Compatible with stringent FDA regulations 			
Scalable application	 Best precision = best ion ratios = best quant results Rugged ion source design Retention Time Locking for reproducible methods over time and between labs 			
Sample prep	Sample preparation as per FDA guidelinesEasy sample preparation			
Time and costs	 Automated tuning, easy to use instrument. Efficient Quant review with MassHunter Data Integrity 			

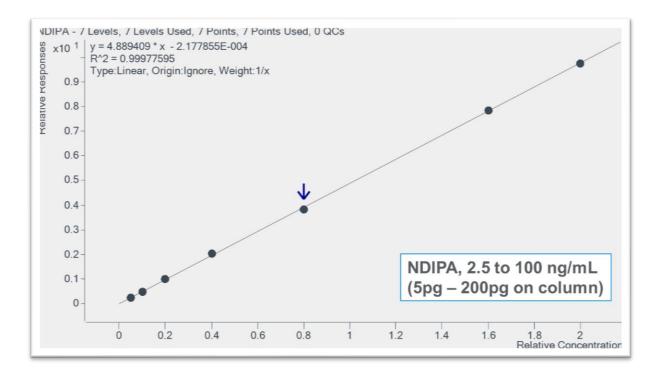

Back to Introduction

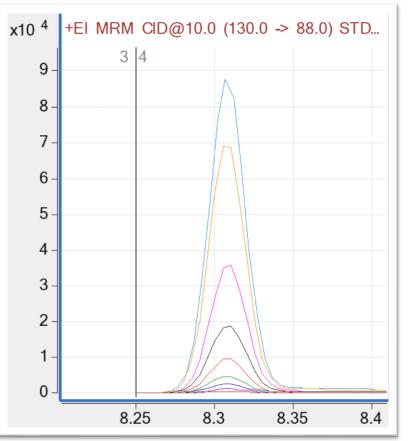


Losartan Calibration Curves

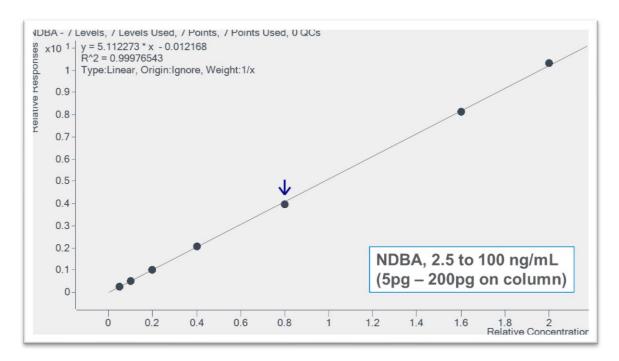


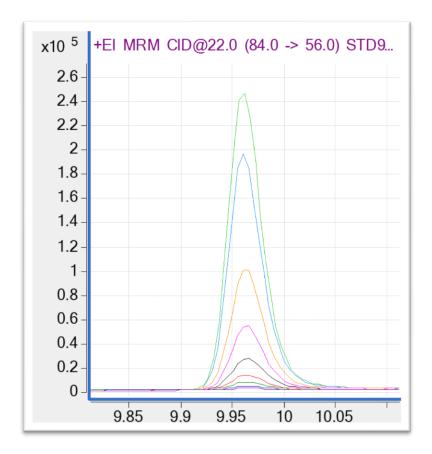





Losartan

Calibration Curves





Losartan

Calibration Curves

Losartan LC/MS Method for Analysis

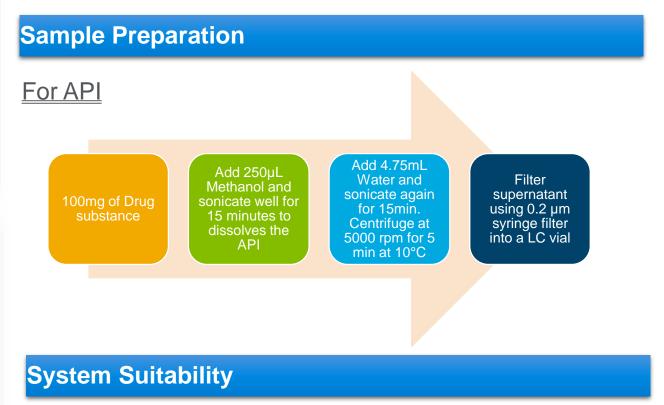
Instrument Method

Chromatographic Condition:				
Mobile Phase A:	0.2 % Formic Acid in Water			
Mobile Phase B:	Methanol			
Sample Diluent:	Water: Methanol/ 95:5 (v/v)			
Flow Rate:	0.25mL/min			
Injection Volume:	20µL			
Column Used:	Zorbax Eclipse Plus Phenyl-Hexyl, RRHD 2.1 x 100mm 1.8µm (P/N 959758-912)			
Column Temperature:	40°C			

Gradient Program:

Time (Min)	Mobile Phase A	Mobile Phase B	Flow Rate(mL/min)
0	95	5	0.25
5	75	25	0.25
13	45	55	0.25
20	45	55	0.4
20.1	5	95	0.4
23	5	95	0.25
23.1	95	5	0.25
25	95	5	0.25

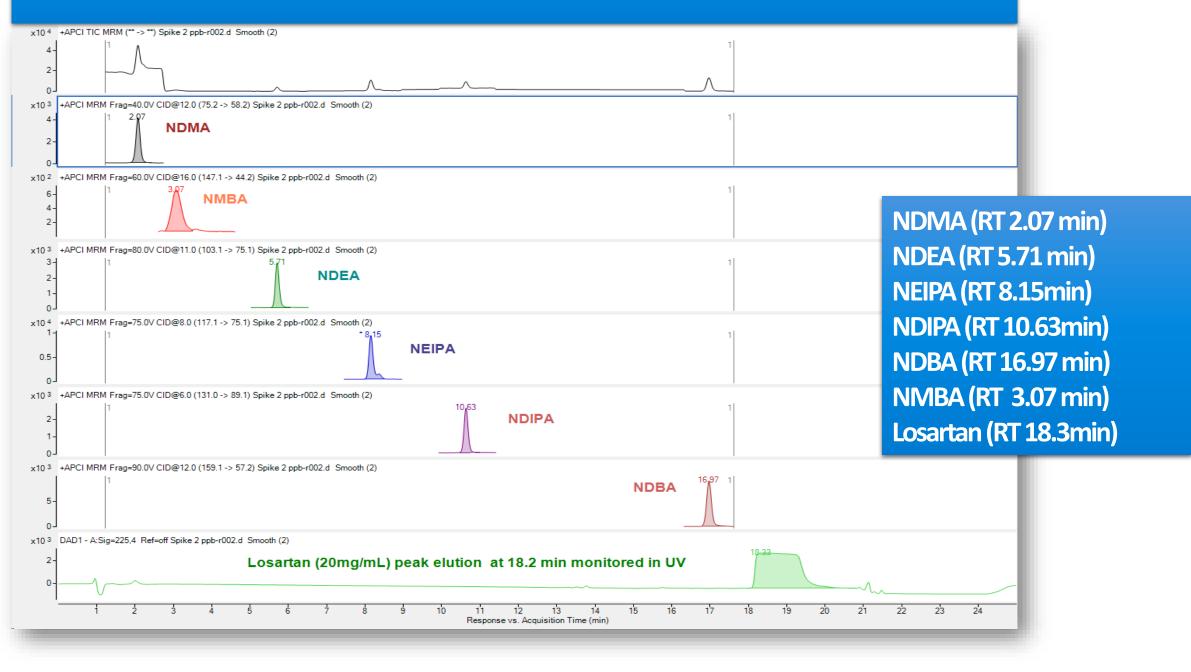
Table1: Chromatographic Gradient Program for analysis


Post Run Time: 2 minutes

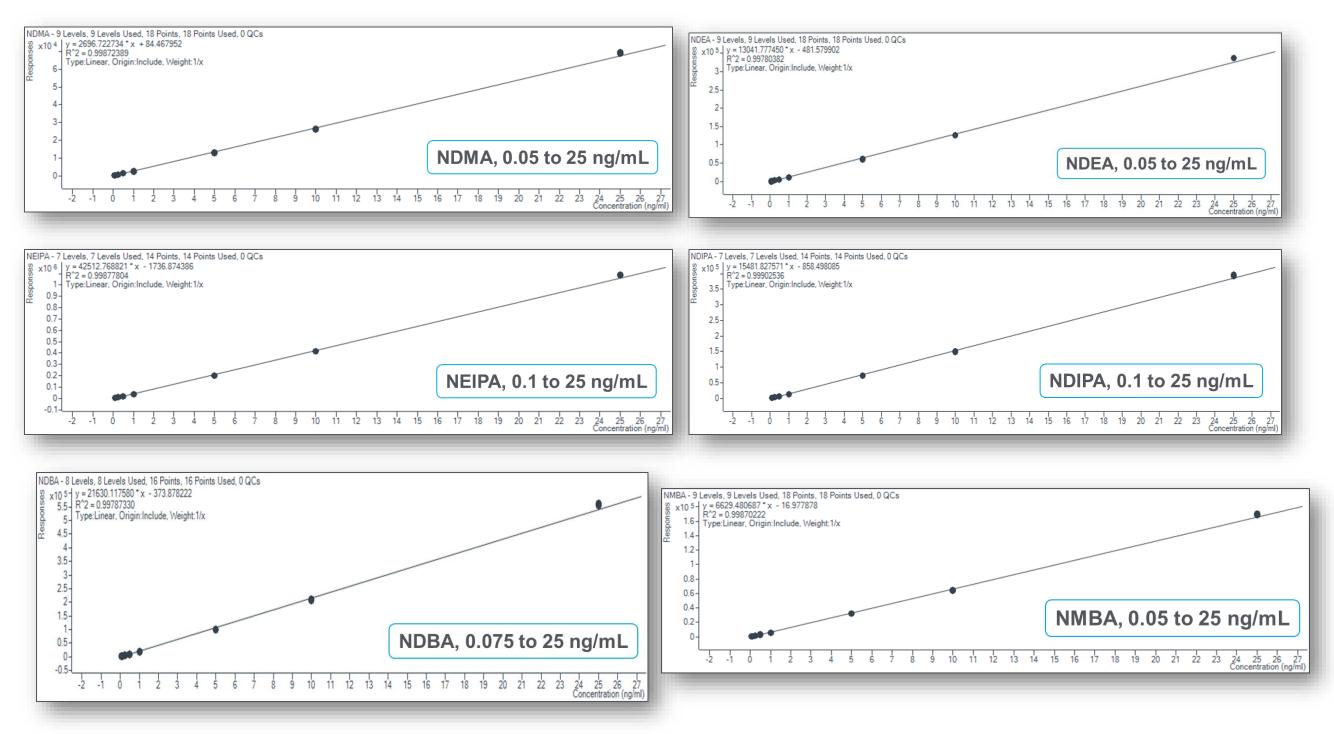
Instrument	Agilent 6470 / Ultivo Triple Quadrupole mass spectrometer
Ion source	Atmospheric Pressure Chemical Ionization (APCI)
MS/MS mode	MRM
Ion mode	Positive
Drying gas temperature	300 °C
Drying gas flow	6 L/min
Nebulizer pressure	55 psi
APCI heater	350 °C
APCI needle positive	4 μA
Capillary voltage, positive	3000 V
MS1/MS2 resolution	0.7/0.7 (unit/unit)

Compound	Precursor Ion (m/z)	Product Ion (m/z)	Retention Time(min)	Retention Time Window (Min)	Fragmentor (V)	Collision Energy(V)	Polarity
NDEA	103.1	75.1	3.484	1.5	85	8	+
NDEA	103.1	47.1	3.484	1.5	85	16	+
NDMA	75.1	58	1.143	1.24	65	10	+
NDMA	75.1	43.1	1.143	1.24	65	17	+
NMBA	147.1	44.2	2.247	1.2	50	7	+
NMBA	147.1	87.2	2.247	1.2	50	7	+
NEIPA	117.1	75.1	4.325	1.0	70	7	+
NEIPA	117.1	47.1	4.325	1.0	70	15	+
NDIPA	131.1	89.1	4.916	1.0	50	5	+
NDIPA	131.1	43.1	4.916	1.0	50	7	+
NDBA	159.1	57.2	6.096	1.0	70	7	+
NDBA	159.1	41.1	6.096	1.0	70	24	+

Calibrations


0.05/ 0.1 ng/mL to 25 ng/mL

The coefficient of determination (R^2) of the linear calibration curve should be \ge 0.990. The S/N ratio of the 1 ng/mL linearity standard should be \ge 10. % RSD of six replicate injections of the 1 ng/mL standard should be \le 10



Losartan Calibration Curves

Losartan Representative Recovery % of Nitrosamine Impurities

@ 1ng/mL (0.05ppm) and 2ng/mL (0.1ppm) concentrations using 20mg/mL sample size

Nitrosamine Impurity	Concentration (ng/mL)	Recovery %
NDMA	2	110
NMBA	1	113
NDEA	1	103
NEIPA	1	100
NDIPA	1	98
NDBA	2	91

Note:

1. The Losartan sample used for recovery study was containing NDMA and NDBA at some concentration levels so recovery was established at 2ng/mL spike for these two impurities.

2.Use of corresponding internal standards for each nitrosamines may further help in any recovery issue.

Benefits of Agilent LC/TQ			
Optimized methods	 Optimized method for losartan drug substance Detect and quantify nitrosamine impurities limits per published FDA regulatory testing method guidance 		
Scalable application	 Best precision = best ion ratios = best quant results; Rugged ion source design 		
Sample prep	 Sample preparation as per EDQM guidelines Easy sample preparation 		
Time and costs	 Automated tuning, easy to use instrument Efficient Quant review with MassHunter Data Integrity 		

Telmisartan

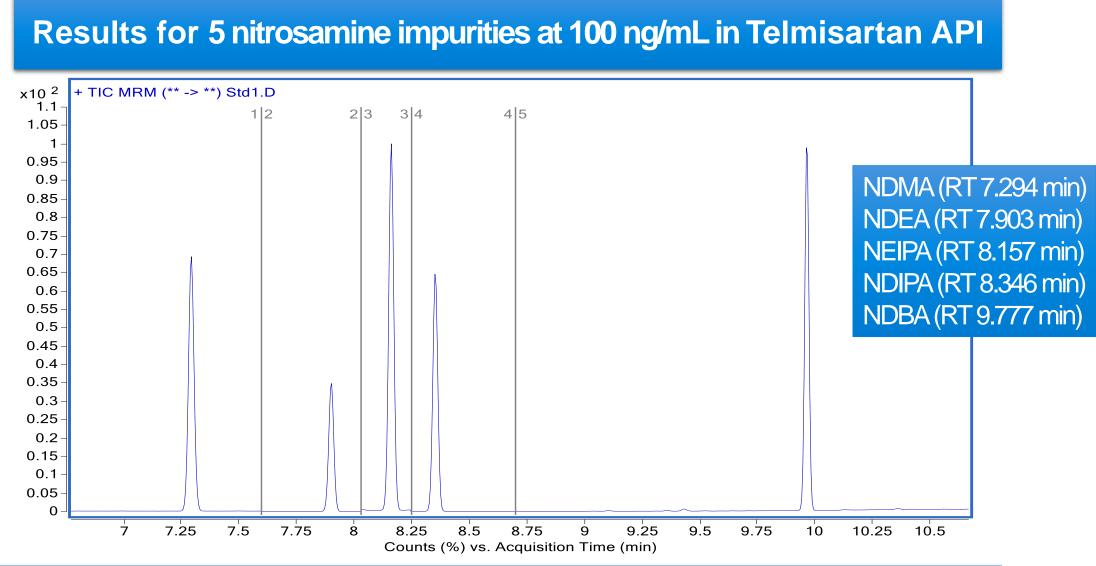
GC/MS Method for Analysis

Instrument Method				
ALS	GC	MS		
Injection Volume: 2µL	Carrier Gas: He 1mL/min	El Mode		
Parameter	Value			
MMI injection mode	Pulsed splitless: 12.285 psi until 0.5 min			
Inlet temperature	250 °C			
Oven temperature program	40 °C (0.5 min) 20 °C/min to 200 °C (0 min) 60 °C/min to 250 °C (3 min)			
Total run time	12.33 min	,		
MS transfer line temperature	250 °C			

Parameter	Value		
Source temperature	250 °C		
Quadrupole			
temperature	Q1 and Q2 = 150 °C		
MS1 and MS2			
resolution	All compounds Unit		
Collision gas flow	Nitrogen at 1.5 mL/min,		
Quenching gas flow	Helium at 4 mL/min		
Quant./qual. transitions (FDA method)	Start time: 6.5 min NDMA	74 \rightarrow 44, CE 15, dwell 150 ms 74 \rightarrow 42, CE 20, dwell 50 ms NDMA:C13-d ₆ 82 \rightarrow 48, CE 20, dwell 100 ms	
	Start time: 7.60 min NDEA	102 →85, CE 10 V, dwell 150 ms 102 →56, CE 18 V, dwell 150 ms	
	Start time: 8.03 min NEIPA	116 →99, CE 10 V, dwell 150 ms 71 →56, CE 10 V, dwell 150 ms	
	Start time: 8.25 min NDIPA	130 →88, CE 10 V, dwell 150 ms 130 →42, CE 10 V, dwell 150 ms	
	Start time: 8.70 min NDBA	158 →99, CE 10 V, dwell 150 ms 84 →56, CE 22 V, dwell 150 ms	

Sample Preparation For API Add 5 mL NDMA-C13-D6 Vortex for 1 min Filter 1 mL followed by supernatant 500 mg of Drug substance centrifugation through a 0.45 µm filter paper for 2 min at in a GC vial Dichloromethan 4000 rpm e (50 ng/mL For Drug Product Add 5 mL NDMA-C13-D6 Vortex for 1 min Filter 0.5 mL followed by supernatant through a 0.45 standard centrifugation um filter paper prepared in for 2 min at 500 mg of API 4000 rpm in a GC vial Dichloromethan e (50 ng/mL

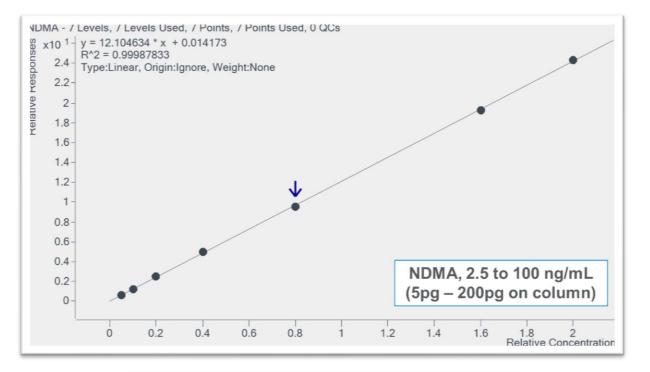
Calibrations

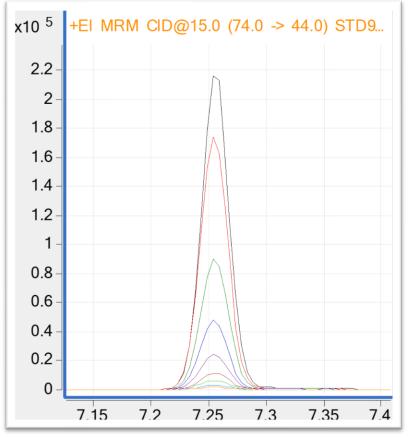

2.5 ng/ml, 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml, 80 ng/ml and 100 ng/ml each prepared in Dichloromethane containing 50 ng/mL of NDMA –C13-D6

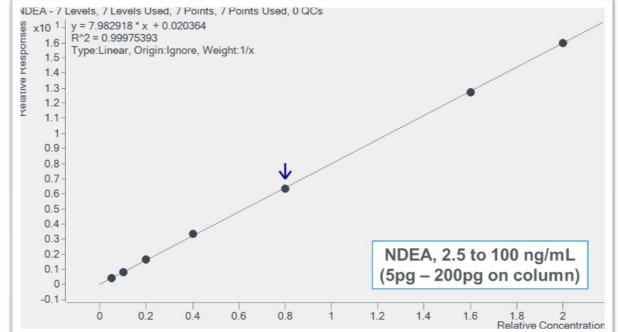
System Suitability

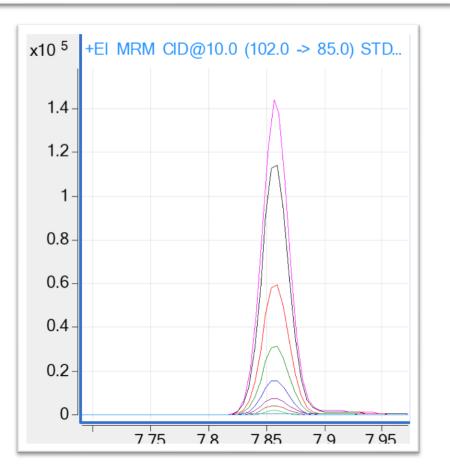
The coefficient of determination (R2) of the linear calibration curve should be \geq 0.998. The S/N ratio of the 5 ng/mL linearity standard should be \geq 10. % RSD of six replicate injections of the 40 ng/mL standard should be \leq 5

Telmisartan

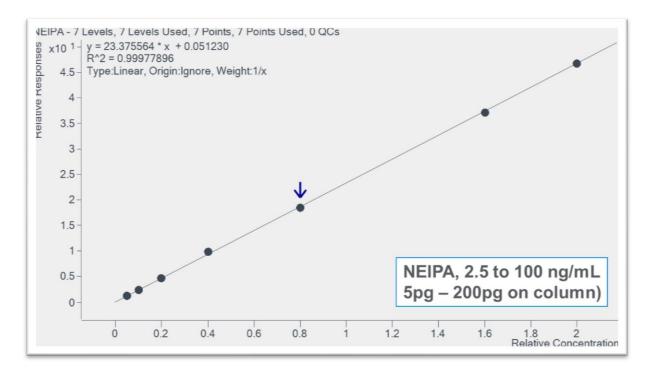


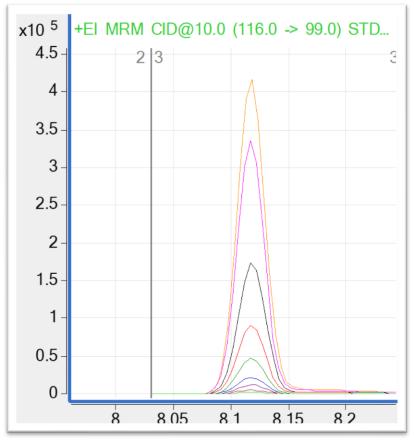

Benefits Agilent GC/TQ		
Optimized methods	 Optimized method for both API and Formulation Compatible with stringent FDA regulations 	
Scalable application	 Best precision = best ion ratios = best quant results Rugged ion source design Retention Time Locking for reproducible methods over time and between labs 	
Sample prep	Sample preparation as per FDA guidelinesEasy sample preparation	
Time and costs	 Automated tuning, easy to use instrument. Efficient Quant review with MassHunter Data Integrity 	

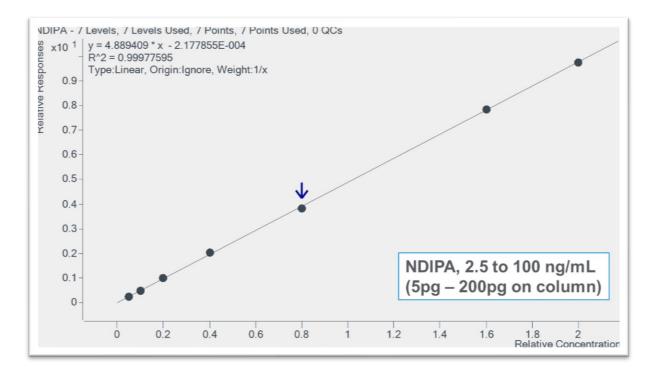

Back to Introduction

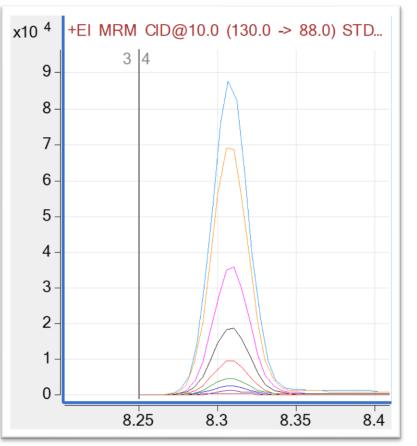


Telmisartan Calibration Curves

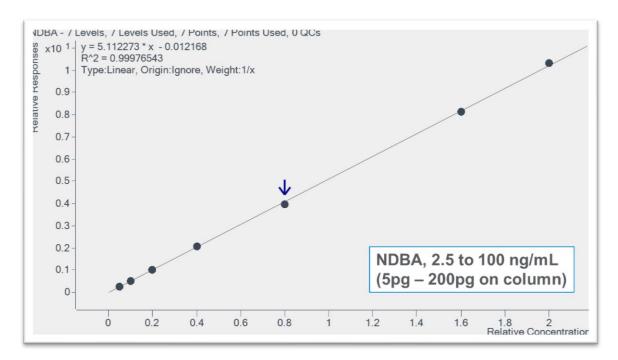


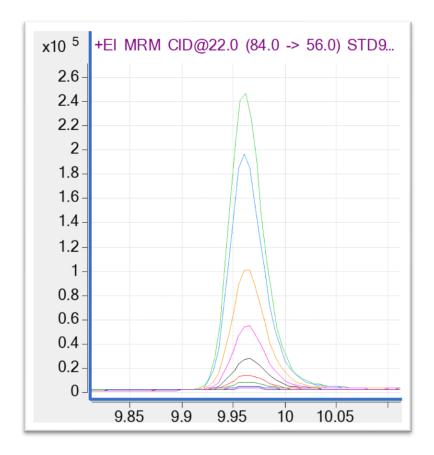




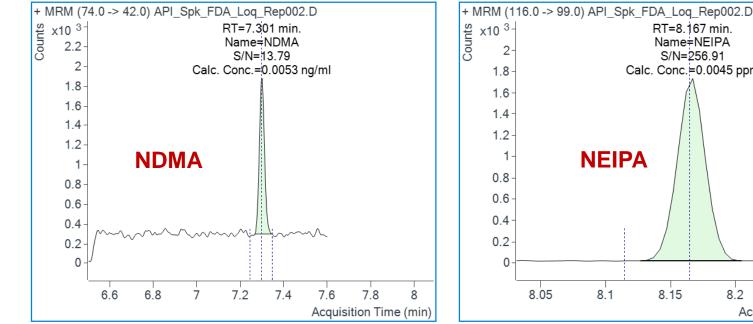

Telmisartan

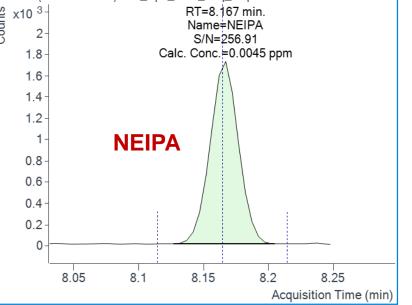
Calibration Curves

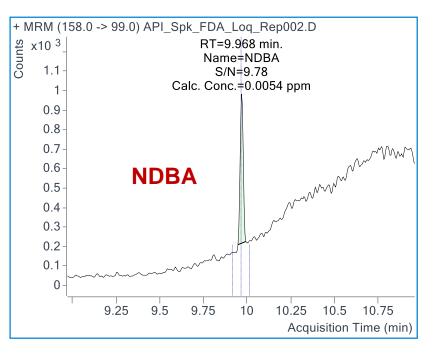


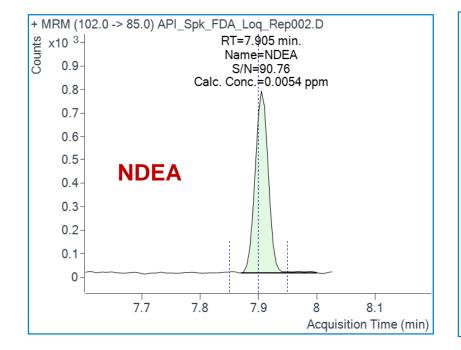


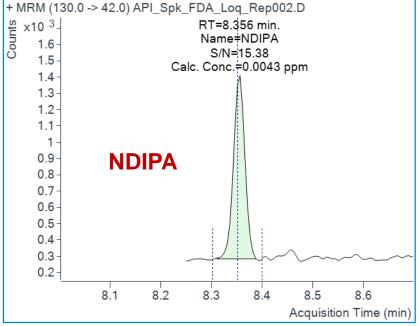
Telmisartan


Calibration Curves







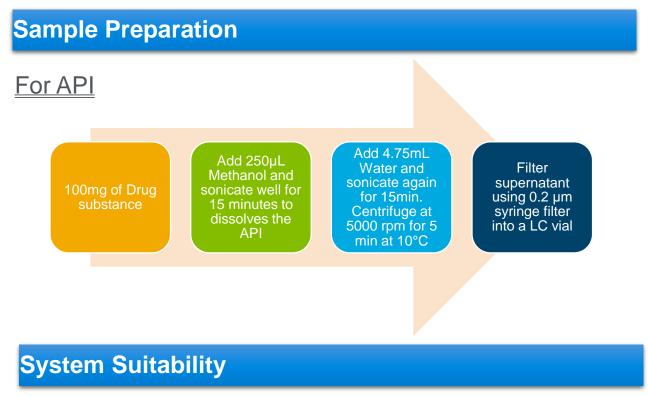

Representative Recovery % of Nitrosamine Impurities in Telmisartan at 0.005 ppm

Compound	Spiking Level (ppm)	Sample Results (ppm)	Recovery (%)
NDMA	0.005	0.0053	106
NDEA	0.005	0.0054	108
NEIPA	0.005	0.0045	90
NDIPA	0.005	0.0043	86
NDBA	0.005	0.0054	108

Telmisartan LC/MS Method for Analysis

Instrument Method

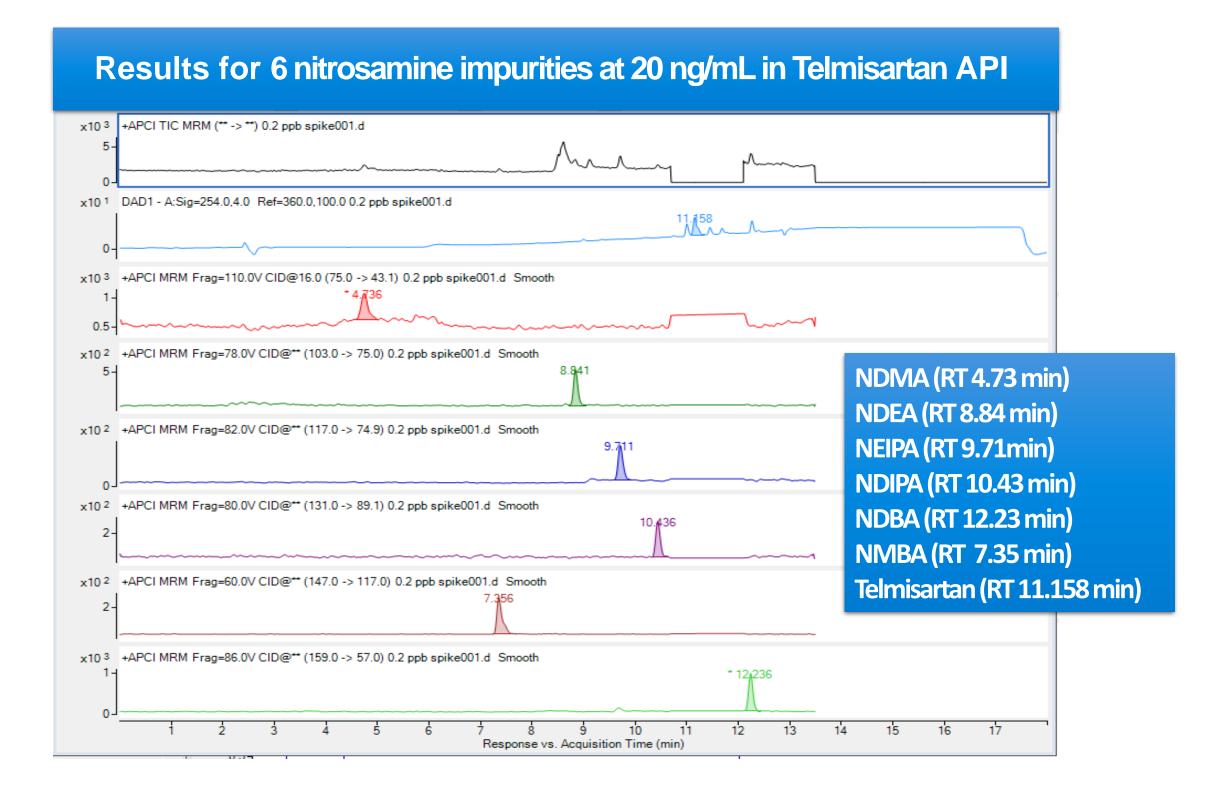
Mobile phase A:	0.1 % formic acid in water
Mobile phase B:	0.1 % formic acid in Methanol
Multisampler temperature:	10°C
Injection volume:	20 µL
Analytical column:	Agilent Zorbax Eclipse Plus C18 150*3.0mm 3.5micron (P/N:959963-302)
Column temperature:	40 °C
Flow rate:	0.3 mL/min
Gradient	


Time (min)	% A	% B	Flow (mL/min)
0	95	5	0.3
3.0	95	5	0.3
7.0	40	60	0.3
11.0	5	95	0.3
15.0	5	95	0.3
15.1	95	5	0.3
18.0	95	5	0.3

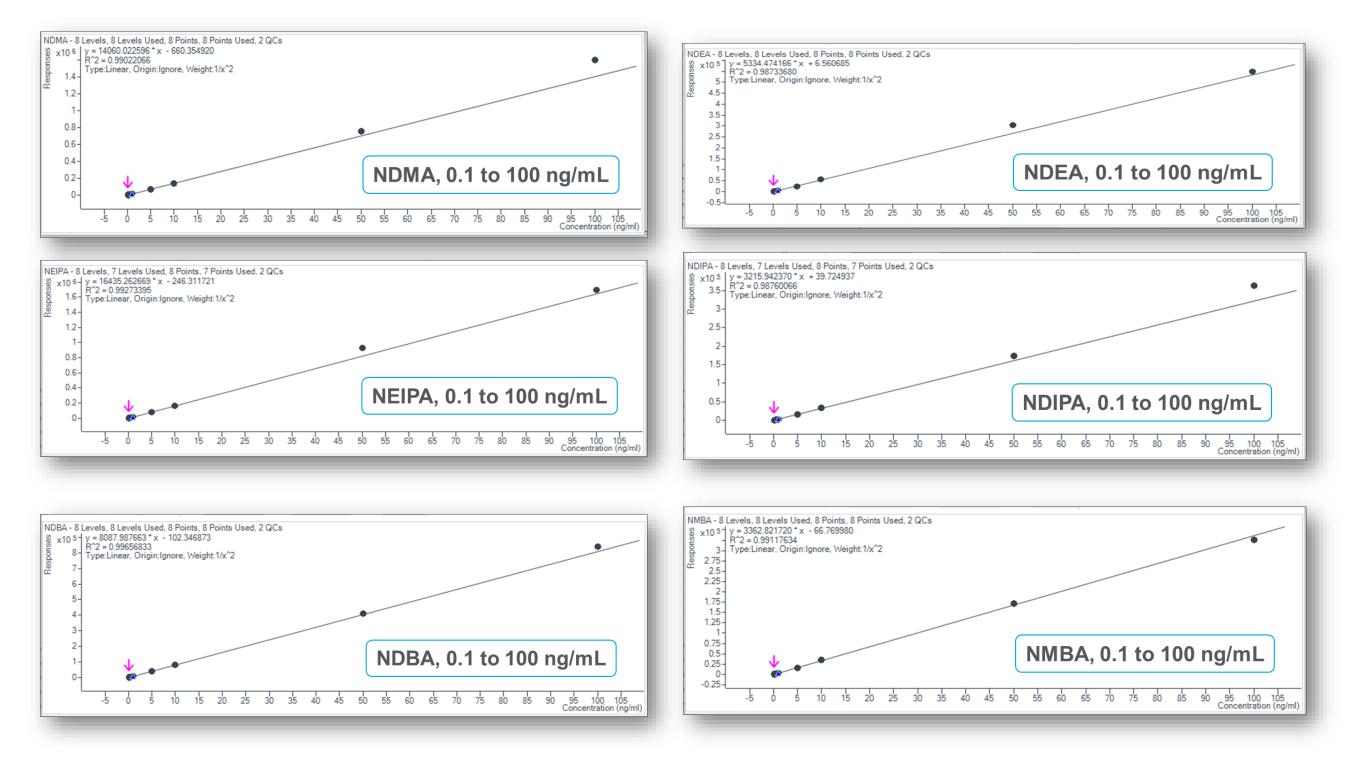
Instrument	Agilent 6470 Triple Quadrupole mass spectrometer
Ion source	Atmospheric Pressure Chemical Ionization (APCI)
MS/MS mode	MRM
lon mode	Positive
Drying gas temperature	300 °C
Drying gas flow	6 L/min
Nebulizer pressure	35 psi
APCI heater	350 °C
APCI needle positive	4 μA
Capillary voltage, positive	4000 V
MS1/MS2 resolution	0.7/0.7 (unit/unit)
Dwell time	50 ms

Compound	Precursor ion (m/z)	Product Ion (m/z)	Fragmentor (V)	Collision Energy(V)	CAV(V)	Polarity
NDMA(Quantifier)	75.1	43.1	100	17	5	+
NDMA (Qualifier)	75.1	58.1	75	11	5	+
NMBA(Quantifier)	147.1	117.4	60	4	3	+
NMBA(Qualifier)	147.1	44.2	60	12	3	+
NDEA(Quantifier)	103.1	75.1	80	9	3	+
NDEA(Qualifier)	103.1	47.1	80	17	3	+
NEIPA(Quantifier)	117.1	75.1	75	8	3	+
NEIPA(Qualifier)	117.1	47.1	75	18	8	+
NDIPA(Quantifier)	131.1	89.1	75	6	3	+
NDIPA(Qualifier)	131.1	43.1	75	12	8	+
NDBA(Quantifier)	159.1	57.2	81	12	5	+
NDBA(Qualifier)	159.1	41.1	81	22	5	+

Calibrations


0.1 ng/mL to 100 ng/mL

The coefficient of determination (R^2) of the linear calibration curve should be ≥ 0.990 . The S/N ratio of the 1 ng/mL linearity standard should be ≥ 10 . % RSD of six replicate injections of the 1 ng/mL standard should be ≤ 10



Telmisartan

Telmisartan Calibration Curves

Telmisartan

Representative Recovery % of Nitrosamine Impurities

@ 0.2ng/mL (0.004ppm) concentration using 50mg/mL sample size

S.No.	Nitrosamine Impurities	Average Recovery%
1	NDMA	101.7
2	NMBA	104.3
3	NDEA	117.7
4	NEIPA	91.1
5	NDIPA	95.6
6	NDBA	91.1

Note: Use of corresponding internal standards for each nitrosamines may further help in any recovery issue.

Benefits of Agilent LC/TQ		
Optimized methods	 Optimized method for telmisartan drug substance Detect and quantify nitrosamine impurities limits per published FDA regulatory testing method guidance 	
Scalable application	 Best precision = best ion ratios = best quant results; Rugged ion source design 	
Sample prep	 Sample preparation as per EDQM guidelines Easy sample preparation 	
Time and costs	 Automated tuning, easy to use instrument Efficient Quant review with MassHunter Data Integrity 	

Back to Introduction

Candesartan

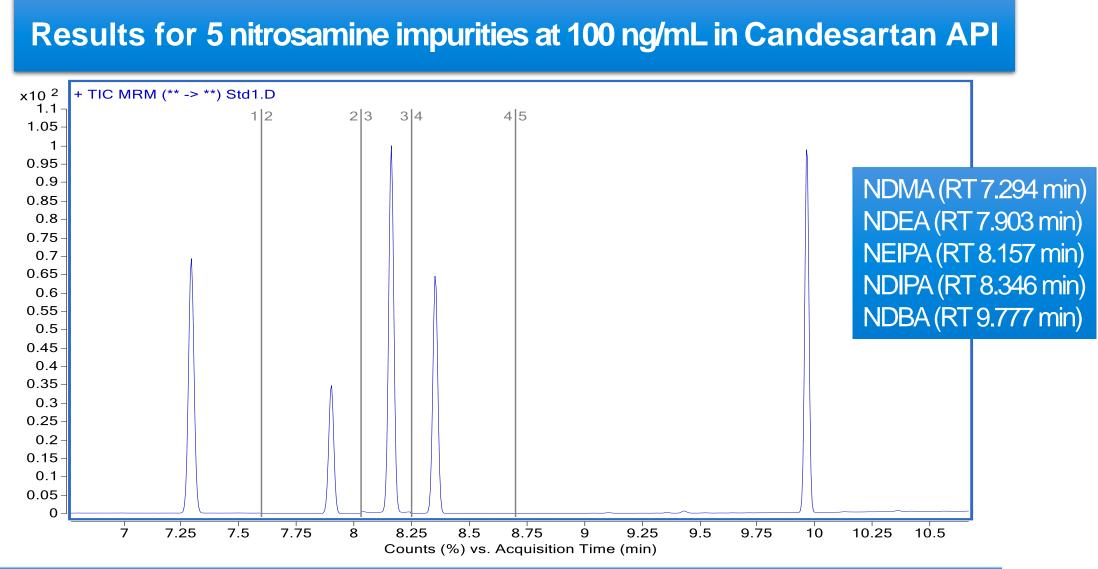
GC/MS Method for Analysis

Instrument Method			
ALS	GC	MS	
Injection Volume: 2µL	Carrier Gas: He 1mL/min	El Mode	
Parameter	Value		
MMI injection mode	Pulsed splitless: 12.285	psi until 0.5 min	
Inlet temperature	250 °C		
Oven temperature program	40 °C (0.5 min) 20 °C/min to 200 °C (0 n 60 °C/min to 250 °C (3 n	,	
Total run time	12.33 min		
MS transfer line			

Parameter	Value	
Source temperature	250 °C	
Quadrupole		
temperature	Q1 and Q2 = 150 °C	
MS1 and MS2		
resolution	All compounds Unit	
Collision gas flow	Nitrogen at 1.5 mL/min,	
Quenching gas flow	Helium at 4 mL/min	
Quant./qual.	Start time: 6.5 min NDMA	74 \rightarrow 44, CE 15, dwell 150 ms 74 \rightarrow 42, CE 20, dwell 50 ms NDMA:C13-d ₆ 82 \rightarrow 48, CE 20, dwell 100 ms
	Start time: 7.60 min NDEA	102 →85, CE 10 V, dwell 150 ms 102 →56, CE 18 V, dwell 150 ms
transitions (FDA method)	Start time: 8.03 min NEIPA	116 →99, CE 10 V, dwell 150 ms 71 →56, CE 10 V, dwell 150 ms
	Start time: 8.25 min NDIPA	130 →88, CE 10 V, dwell 150 ms 130 →42, CE 10 V, dwell 150 ms
	Start time: 8.70 min NDBA	158 →99, CE 10 V, dwell 150 ms 84 →56, CE 22 V, dwell 150 ms

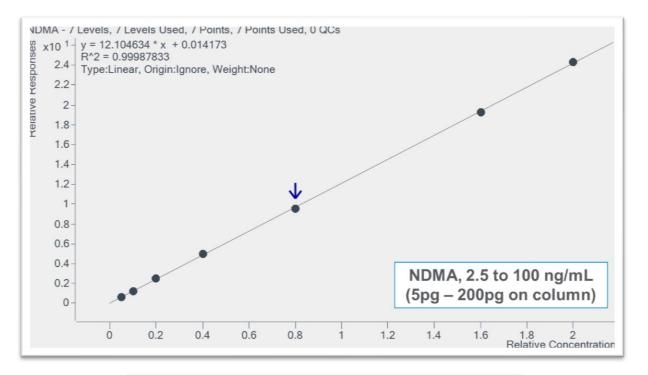
Sample Preparation For API Add 5 mL NDMA-C13-D6 Vortex for 1 min Filter 1 mL followed by supernatant 500 mg of Drug substance centrifugation through a 0.45 µm filter paper for 2 min at in a GC vial Dichloromethan 4000 rpm e (50 ng/mL For Drug Product Add 5 mL NDMA-C13-D6 Vortex for 1 min Filter 0.5 mL followed by supernatant through a 0.45 standard centrifugation um filter paper prepared in for 2 min at 500 mg of API 4000 rpm Dichloromethan in a GC vial e (50 ng/mL

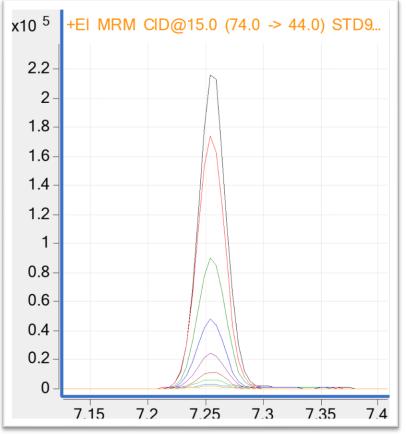
Calibrations

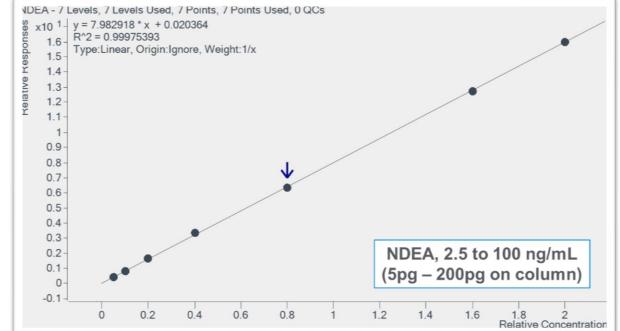

2.5 ng/ml, 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml, 80 ng/ml and 100 ng/ml each prepared in Dichloromethane containing 50 ng/mL of NDMA –C13-D6

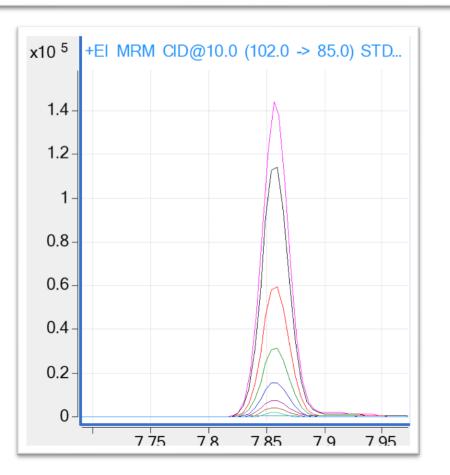
System Suitability

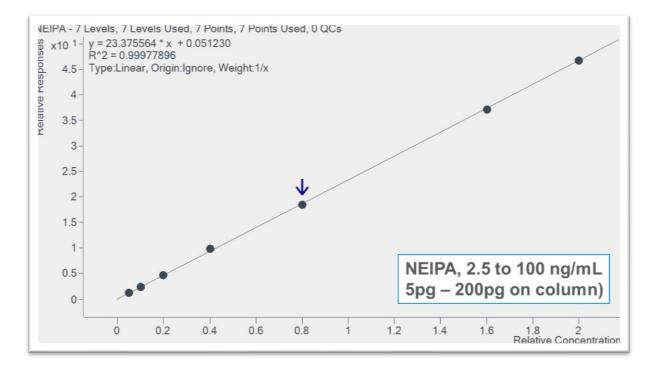
The coefficient of determination (R2) of the linear calibration curve should be \geq 0.998. The S/N ratio of the 5 ng/mL linearity standard should be \geq 10. % RSD of six replicate injections of the 40 ng/mL standard should be \leq 5

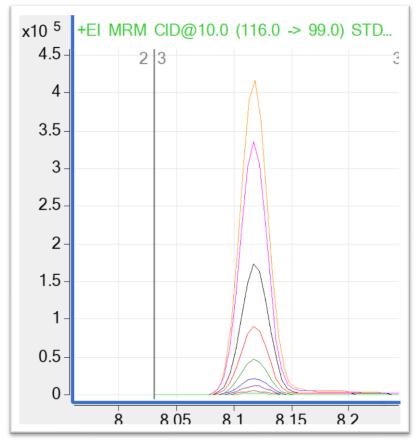

Candesartan

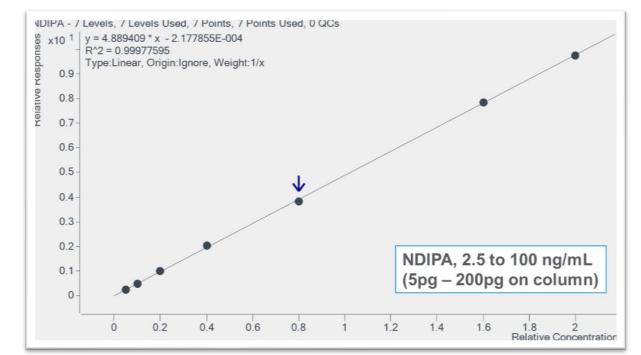


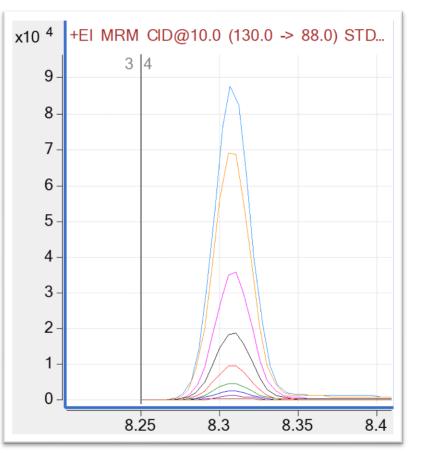

Benefits Agilent GC/TQ		
Optimized methods	 Optimized method for both API and Formulation Compatible with stringent FDA regulations 	
Scalable application	 Best precision = best ion ratios = best quant results Rugged ion source design Retention Time Locking for reproducible methods over time and between labs 	
Sample prep	 Sample preparation as per FDA guidelines Easy sample preparation 	
Time and costs	 Automated tuning, easy to use instrument. Efficient Quant review with MassHunter Data Integrity 	


Back to Introduction

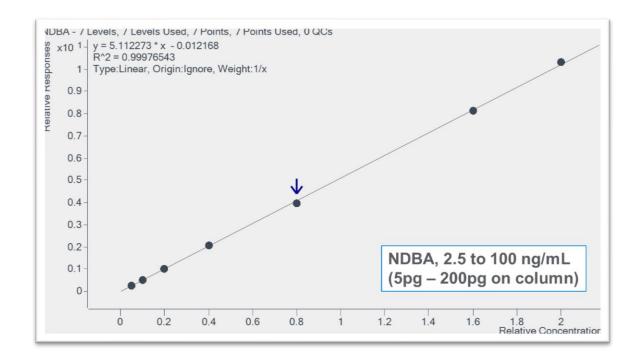


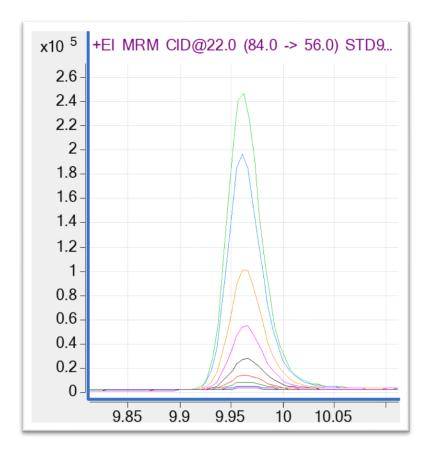






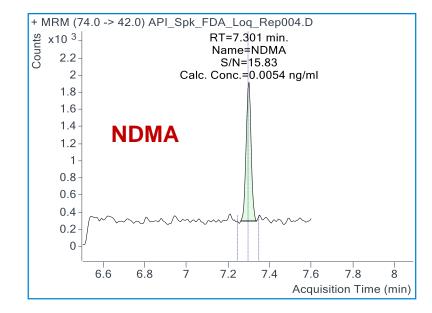
Candesartan Calibration Curves

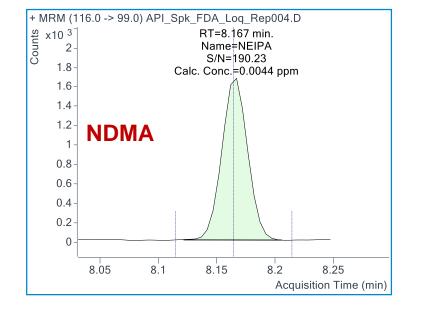


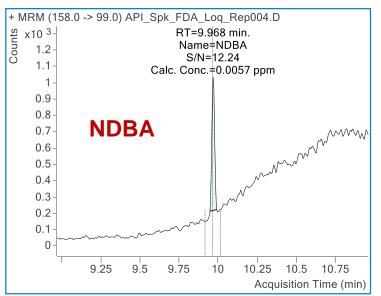


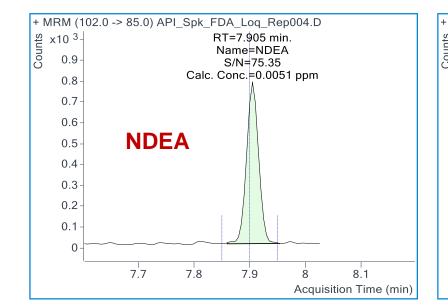
Candesartan

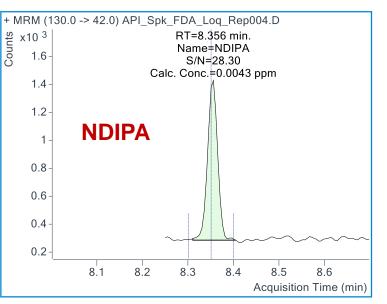
Calibration Curves








Back to Introduction

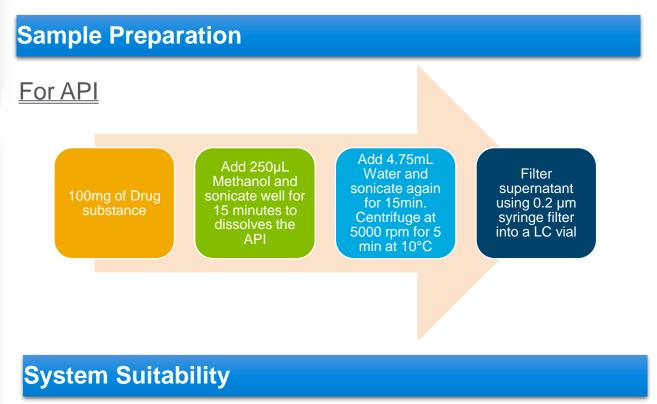

Representative Recovery % of Nitrosamine Impurities in Candesartan at 0.005 ppm

Compound	Spiking Level (ppm)	Sample Results (ppm)	Recovery (%)
NDMA	0.005	0.0054	108
NDEA	0.005	0.0051	102
NEIPA	0.005	0.0044	88
NDIPA	0.005	0.0043	86
NDBA	0.005	0.0057	114

Candesartan LC/MS Method for Analysis

Instrument Method

Mobile phase A:	0.2 % formic acid in water
Mobile phase B:	Methanol
Multisampler	10°C
temperature:	
Injection volume:	20 µL
Analytical column:	Agilent Zorbax Eclipse Plus C18 100*3.0mm 1.8micron (P/N:959758-302)
Column temperature:	40 °C
Flow rate:	0.4 mL/min
Gradient	


% A	% B	Flow (mL/min)
95	5	0.4
95	5	0.4
40	60	0.4
5	95	0.4
5	95	0.4
95	5	0.4
95	5	0.4
	95 95 40 5 5 95	95 5 95 5 40 60 5 95 5 95 95 5 95 5

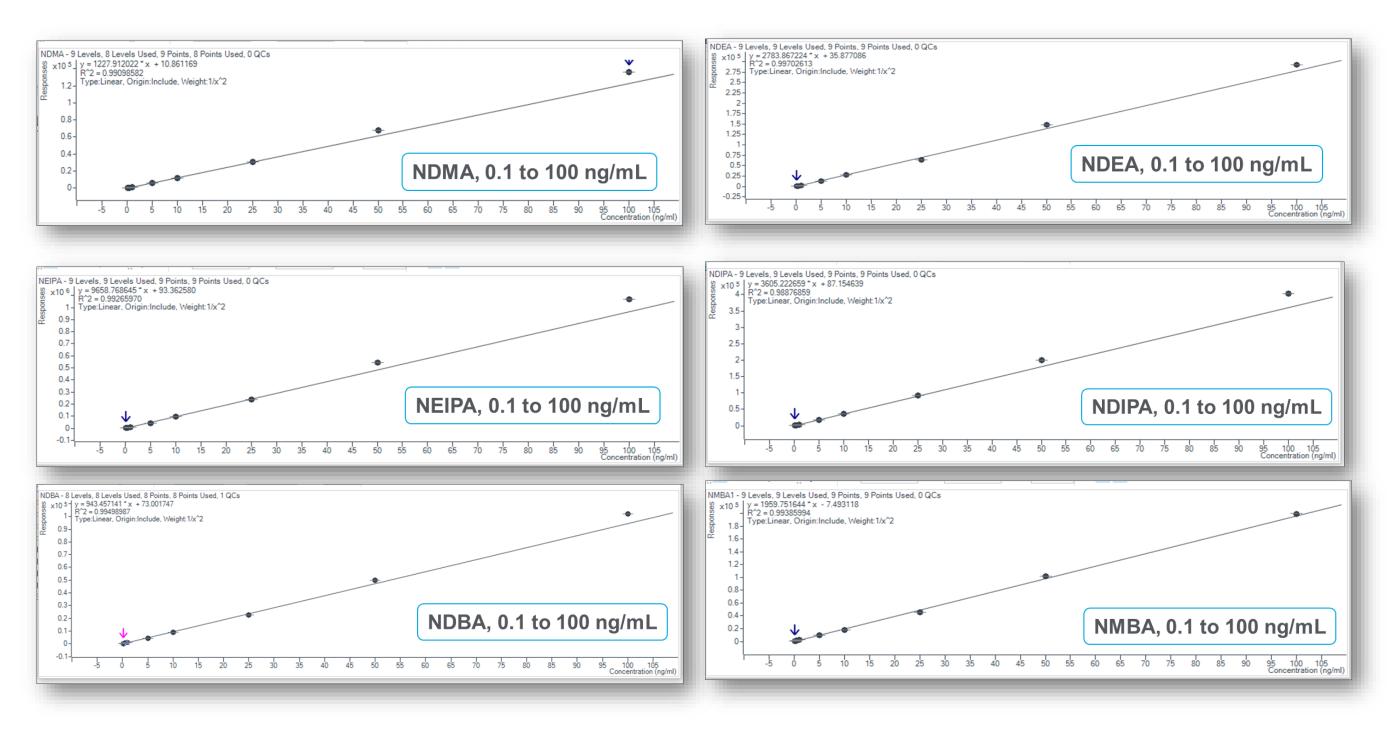
Instrument	Agilent 6470 Triple Quadrupole mass spectrometer
Ion source	Atmospheric Pressure Chemical Ionization (APCI)
MS/MS mode	MRM
lon mode	Positive
Drying gas temperature	300 °C
Drying gas flow	6 L/min
Nebulizer pressure	35 psi
APCI heater	350 °C
APCI needle positive	4 μΑ
Capillary voltage, positive	4000 V
MS1/MS2 resolution	0.7/0.7 (unit/unit)
Dwell time	50 ms

Compound	Precursor Ion (m/z)	Product Ion (m/z)	Fragmentor (V)	Collision Energy(V)	CAV(V)	Polarity
NDMA(Quantifier)	75.1	43.1	100	17	5	+
NDMA (Qualifier)	75.1	58.1	75	11	5	+
NMBA(Quantifier)	147.1	117.4	60	4	3	+
NMBA(Qualifier)	147.1	44.2	60	12	3	+
NDEA(Quantifier)	103.1	75.1	80	9	3	+
NDEA(Qualifier)	103.1	47.1	80	17	3	+
NEIPA(Quantifier)	117.1	75.1	75	8	3	+
NEIPA(Qualifier)	117.1	47.1	75	18	8	+
NDIPA(Quantifier)	131.1	89.1	75	6	3	+
NDIPA(Qualifier)	131.1	43.1	75	12	8	+
NDBA(Quantifier)	159.1	57.2	81	12	5	+
NDBA(Qualifier)	159.1	41.1	81	22	5	+

Calibrations

0.1 ng/mL to 100 ng/mL

The coefficient of determination (R^2) of the linear calibration curve should be ≥ 0.990 . The S/N ratio of the 1 ng/mL linearity standard should be ≥ 10 . % RSD of six replicate injections of the 1 ng/mL standard should be ≤ 10



Candesartan

Results for 6 nitrosamine impurities at 20 ng/mL in Cande	esartan API	
🖉 \leftrightarrow ‡ 🔍 🛨 🚀 📽 🛧 🔺 🗩 😋 10 📼 🛏 🚺 🚣 🎊 🖋 🗞 🎢 🚈 🗯 Minutes	- 3	
x10 4 +APCI TIC MRM (** -> **) 1.0ppb spike P1 -r001.d		
x10 ² +APCI MRM Frag=60.0V CID@12.0 (75.1 -> 58.0) 1.0ppb spike P1 -r001.d		
5-1 0.975		
x10 ² +APCI MRM Frag=80.0V CID@9.0 (103.1 -> 75.1) 1.0ppb spike P1 -r001.d		
	NDMA (RT 0.97 r	nin)
x10 ³ +APCI MRM Frag=75.0V CID@8.0 (117.1 -> 75.1) 1.0ppb spike P1 -r001.d	NDEA (RT 3.49 m	nin)
	NEIPA (RT 4,23m	in)
x10 ³ +APCI MRM Frag=75.0V CID@6.0 (131.1 -> 89.1) 1.0ppb spike P1 -r001.d	NDIPA (RT 5.15 n	nin)
5.156 1	NDBA (RT 7.26m	-
x10 ² +APCI MRM Frag=60.0V CID@10.0 (147.1 -> 87.2) 1.0ppb spike P1 -r001.d		-
2-1 1.708 1	NMBA (RT 1.70)	min)
x10 ² +APCI MRM Frag=90.0V CID@12.0 (159.1 -> 57.2) 1.0ppb spike P1 -r001.d	Candesartan (RT	9.623 min)
2 -1 7.265 1		
+APCI EIC MRM (** -> 611.0) 1.0ppb spike P1 -r001.d ***ZERO ABUNDANCE***		
0		
DAD1 - A:Sig=254.0,4.0 Ref=360.0,100.0 1.0ppb spike P1 -r001.d		
0- 8.653 9.559 10.199	12.873	
x10 ⁵ +APCI EIC(611.0) Scan Frag=100.0V 1.0ppb spike P1 -r01.d		
9.623	1	
1 2 3 4 5 6 7 8 9 10 11 Response vs. Acquisition Time (min)	12 13 14	

Candesartan Calibration Curves

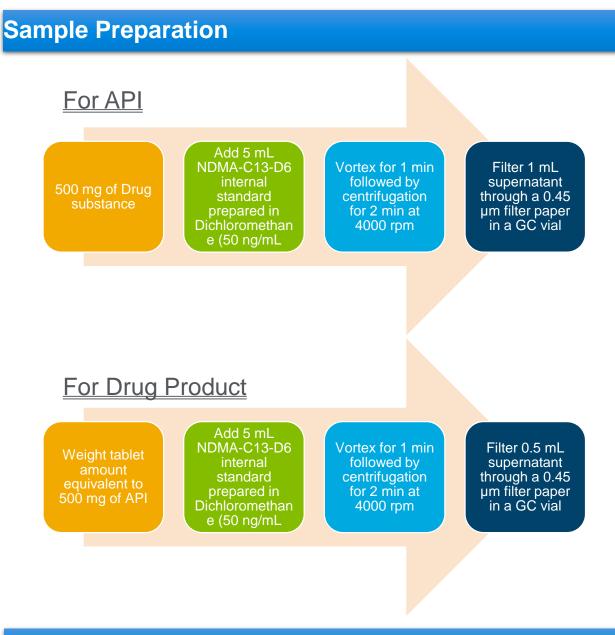
Candesartan

Representative Recovery % of Nitrosamine Impurities

using 20mg/mL sample size

	Recovery %					
Concentration (ng/mL)	NDMA	NDEA	NMBA	NEIPA	NDIPA	NDBA
0.5	106	102	97	102	96	118
1	97	104	101	107	103	108
5	101	99	95	97	95	90
Note: Use of corresponding internal standards for each nitrosamines may further help in any recovery issue.						

Benefits of Agilent LC/TQ			
Optimized methods	 Optimized method for candesartan drug substance Compatible with stringent FDA regulations 		
Scalable application	 Best precision = best ion ratios = best quant results; Rugged ion source design 		
Sample prep	 Sample preparation as per EDQM guidelines Easy sample preparation 		
Time and costs	 Automated tuning, easy to use instrument Efficient Quant review with MassHunter Data Integrity 		



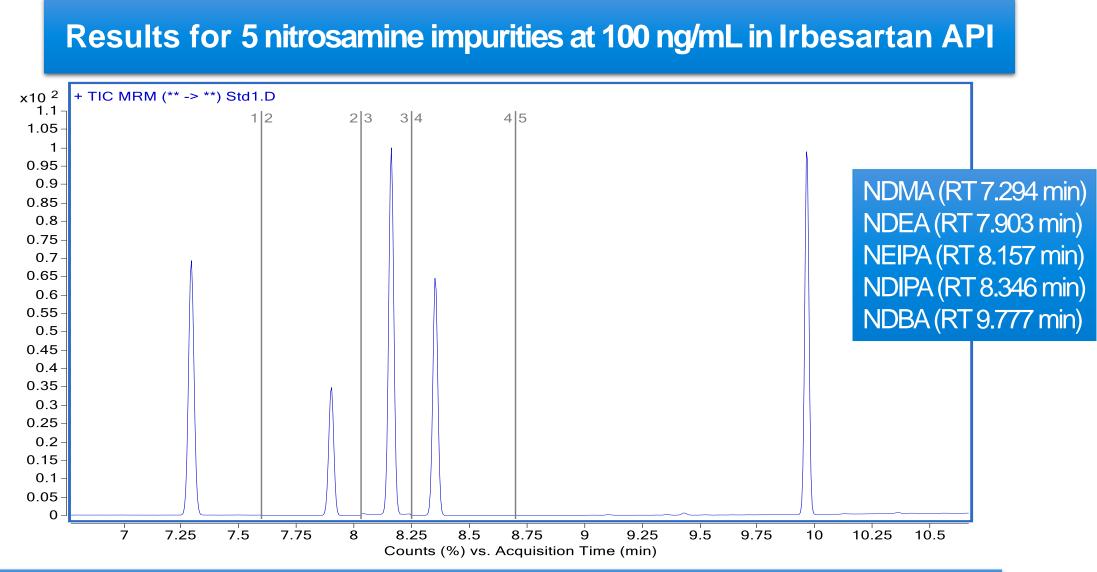
Irbesartan

GC/MS Method for Analysis

Instrument Method	d		
ALS	GC	MS	
Injection Volume: 2µL	Carrier Gas: He 1mL/min	El Mode	
Parameter	Value		
MMI injection mode	Pulsed splitless: 12.285 psi until 0.5 min		
Inlet temperature	250 °C		
Oven temperature program	40 °C (0.5 min) 20 °C/min to 200 °C (0 min) 60 °C/min to 250 °C (3 min)		
Total run time	12.33 min		
MS transfer line temperature	250 °C		

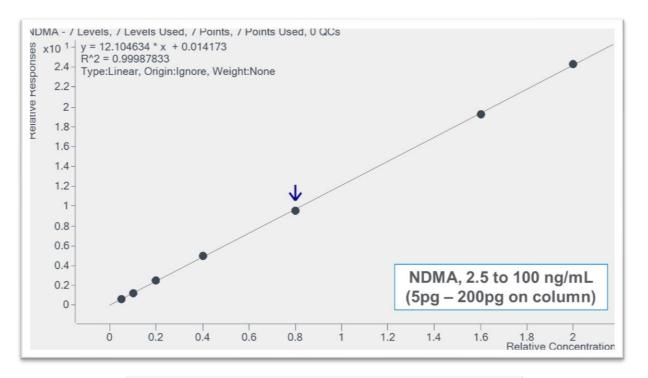
Parameter	Value	
Source temperature	250 °C	
Quadrupole		
temperature	Q1 and Q2 = 150 °C	
MS1 and MS2		
resolution	All compounds Unit	
Collision gas flow	Nitrogen at 1.5 mL/min,	
Quenching gas flow	Helium at 4 mL/min	
	Start time: 6.5 min NDMA	74 \rightarrow 44, CE 15, dwell 150 ms 74 \rightarrow 42, CE 20, dwell 50 ms NDMA:C13-d ₆ 82 \rightarrow 48, CE 20, dwell 100 ms
Quant./qual.	Start time: 7.60 min NDEA	102 →85, CE 10 V, dwell 150 ms 102 →56, CE 18 V, dwell 150 ms
transitions (FDA method)	Start time: 8.03 min NEIPA	116 →99, CE 10 V, dwell 150 ms 71 →56, CE 10 V, dwell 150 ms
	Start time: 8.25 min NDIPA	130 →88, CE 10 V, dwell 150 ms 130 →42, CE 10 V, dwell 150 ms
	Start time: 8.70 min NDBA	158 →99, CE 10 V, dwell 150 ms 84 →56, CE 22 V, dwell 150 ms

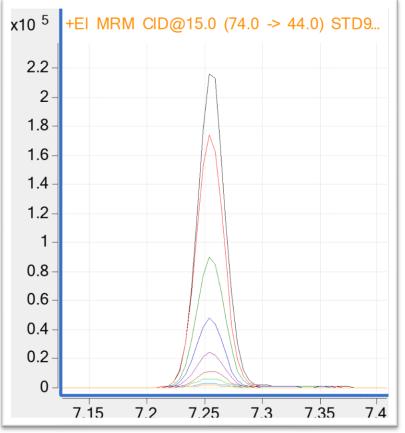
Calibrations

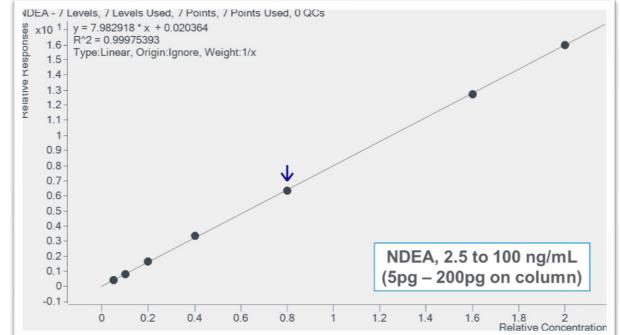

2.5 ng/ml, 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml, 80 ng/ml and 100 ng/ml each prepared in Dichloromethane containing 50 ng/mL of NDMA –C13-D6

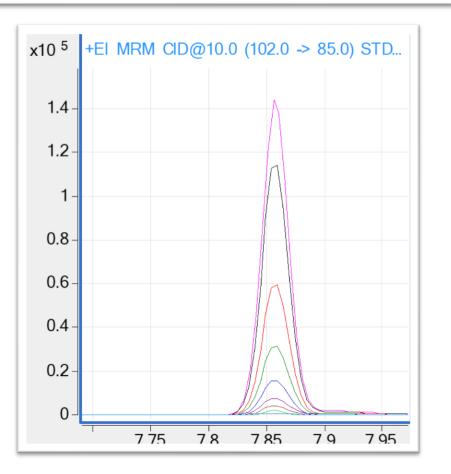
System Suitability

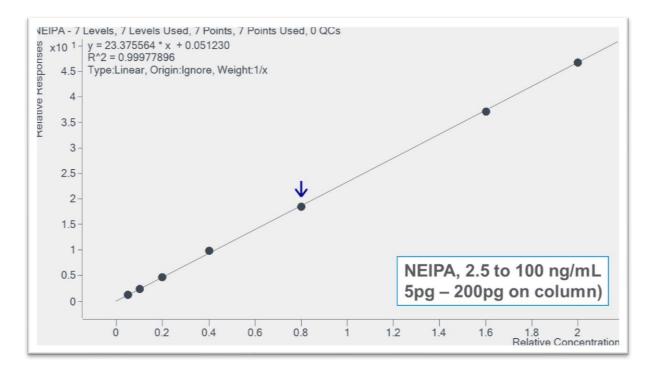
The coefficient of determination (R2) of the linear calibration curve should be \geq 0.998. The S/N ratio of the 5 ng/mL linearity standard should be \geq 10. % RSD of six replicate injections of the 40 ng/mL standard should be \leq 5

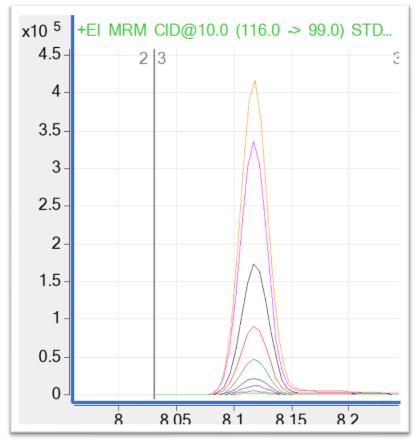

Irbesartan

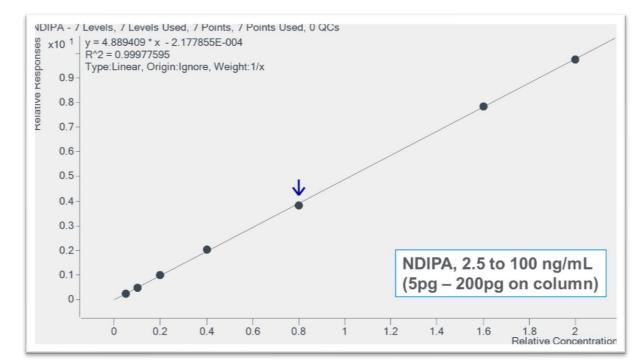


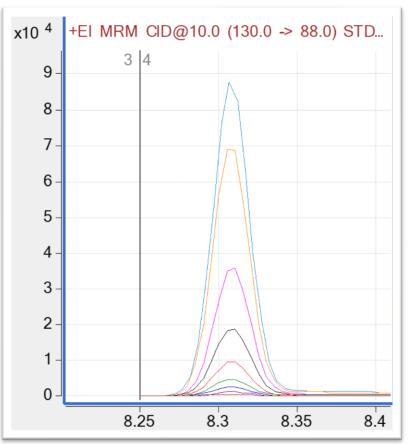

Benefits Agilent GC/TQ		
Optimized methods	 Optimized method for both API and Formulation Compatible with stringent FDA regulations 	
Scalable application	 Best precision = best ion ratios = best quant results Rugged ion source design Retention Time Locking for reproducible methods over time and between labs 	
Sample prep	 Sample preparation as per FDA guidelines Easy sample preparation 	
Time and costs	 Automated tuning, easy to use instrument. Efficient Quant review with MassHunter Data Integrity 	

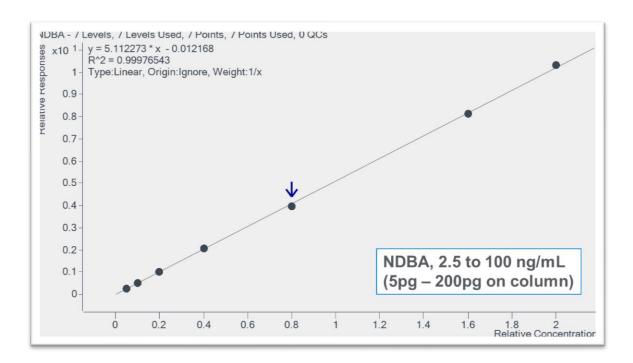

Back to Introduction

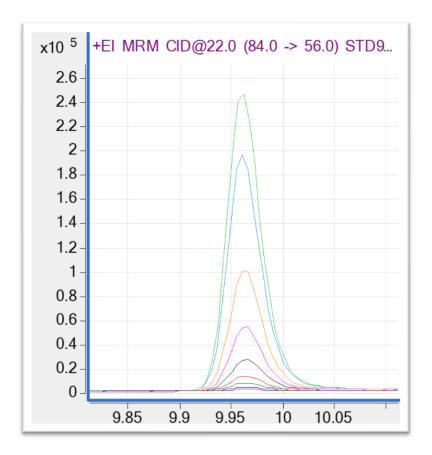


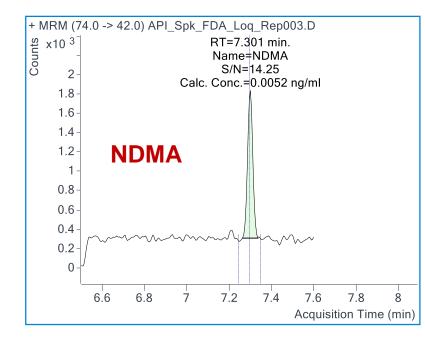


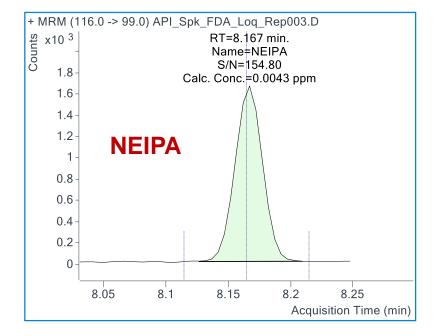


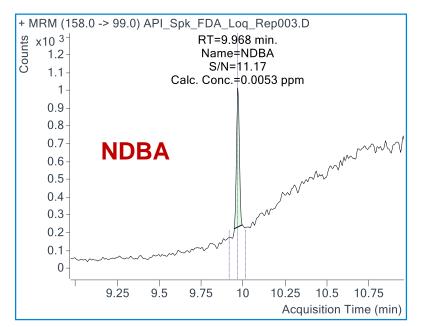


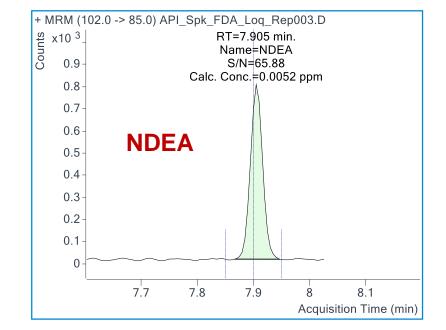


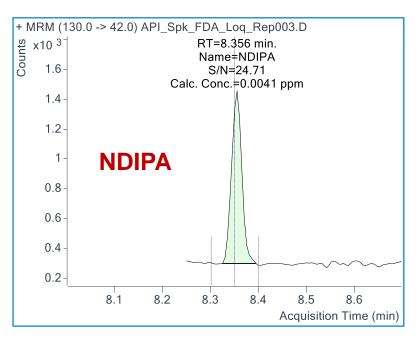











Representative Recovery % of Nitrosamine Impurities in Irbesartan at 0.005 ppm

Compound	Spiking Level (ppm)	Sample Results (ppm)	Recovery (%)
NDMA	0.005	0.0052	104
NDEA	0.005	0.0052	104
NEIPA	0.005	0.0043	86
NDIPA	0.005	0.0041	82
NDBA	0.005	0.0053	106

Back to Introduction

Olmesartan

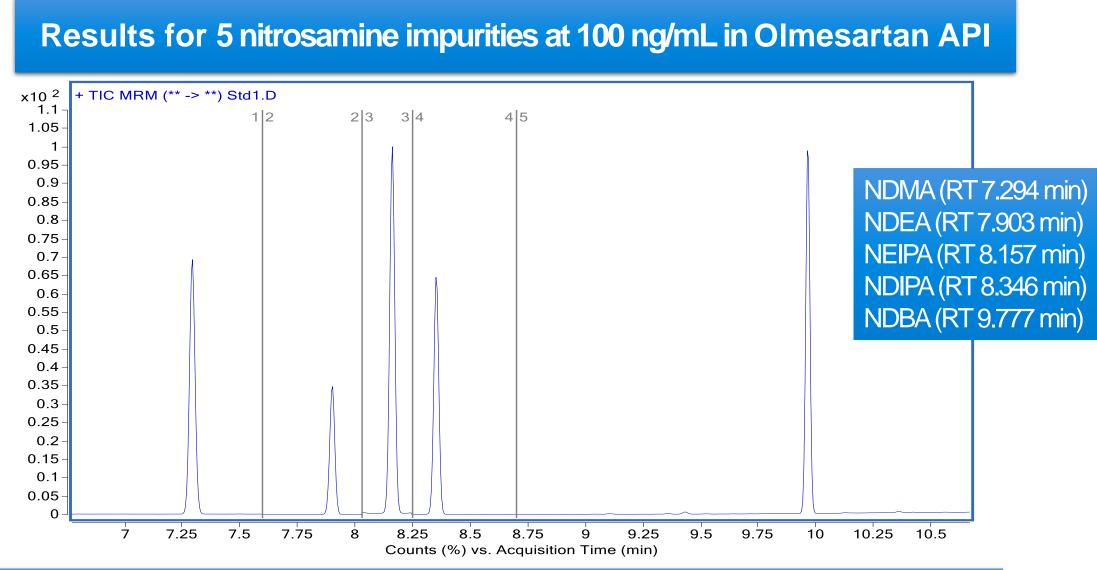
GC/MS Method for Analysis

Instrument Method	k		
ALS	GC	MS	
Injection Volume: 2µL	Carrier Gas: He 1mL/min	El Mode	
Parameter	Value		
MMI injection mode	Pulsed splitless: 12.285 psi until 0.5 min		
Inlet temperature	250 °C		
Oven temperature program	40 °C (0.5 min) 20 °C/min to 200 °C (0 min) 60 °C/min to 250 °C (3 min)		
Total run time	12.33 min		
MS transfer line temperature	250 °C		

Parameter	Value	
Source temperature	250 °C	
Quadrupole		
temperature	Q1 and Q2 = 150 °C	
MS1 and MS2		
resolution	All compounds Unit	
Collision gas flow	Nitrogen at 1.5 mL/min,	
Quenching gas flow	Helium at 4 mL/min	
	Start time: 6.5 min NDMA	74 \rightarrow 44, CE 15, dwell 150 ms 74 \rightarrow 42, CE 20, dwell 50 ms NDMA:C13-d ₆ 82 \rightarrow 48, CE 20, dwell 100 ms
Quant./qual.	Start time: 7.60 min NDEA	102 →85, CE 10 V, dwell 150 ms 102 →56, CE 18 V, dwell 150 ms
transitions (FDA method)	Start time: 8.03 min NEIPA	116 →99, CE 10 V, dwell 150 ms 71 →56, CE 10 V, dwell 150 ms
	Start time: 8.25 min NDIPA	130 →88, CE 10 V, dwell 150 ms 130 →42, CE 10 V, dwell 150 ms
	Start time: 8.70 min NDBA	158 →99, CE 10 V, dwell 150 ms 84 →56, CE 22 V, dwell 150 ms

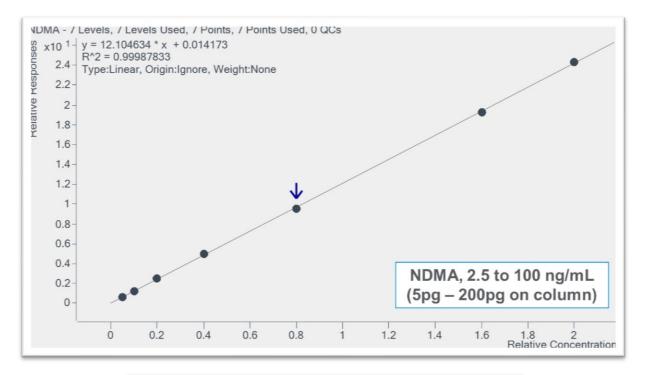
Sample Preparation For API Add 5 mL NDMA-C13-D6 Vortex for 1 min Filter 1 mL followed by supernatant 500 mg of Drug substance centrifugation through a 0.45 µm filter paper for 2 min at in a GC vial Dichloromethan 4000 rpm e (50 ng/mL For Drug Product Add 5 mL NDMA-C13-D6 Vortex for 1 min Filter 0.5 mL followed by supernatant through a 0.45 standard centrifugation um filter paper prepared in for 2 min at 500 mg of API 4000 rpm in a GC vial Dichloromethan e (50 ng/mL

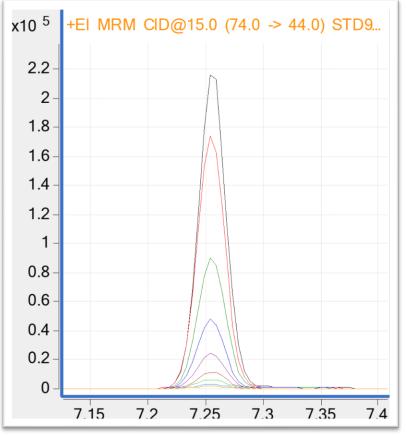
Calibrations

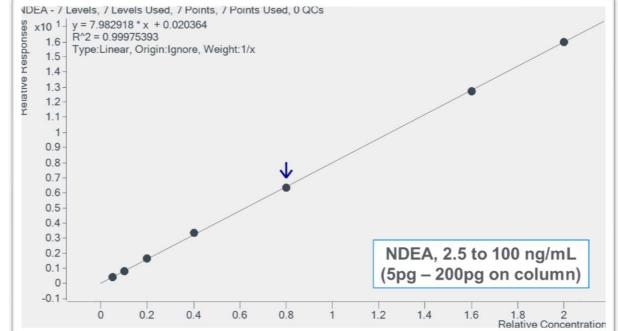

2.5 ng/ml, 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml, 80 ng/ml and 100 ng/ml each prepared in Dichloromethane containing 50 ng/mL of NDMA –C13-D6

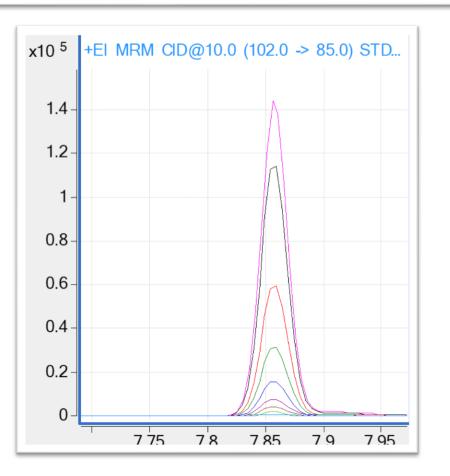
System Suitability

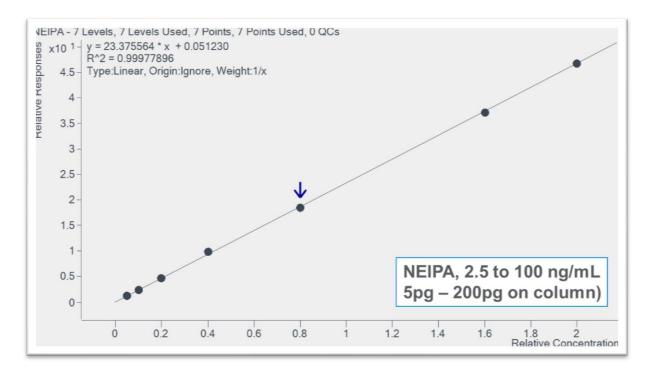
The coefficient of determination (R2) of the linear calibration curve should be \geq 0.998. The S/N ratio of the 5 ng/mL linearity standard should be \geq 10. % RSD of six replicate injections of the 40 ng/mL standard should be \leq 5

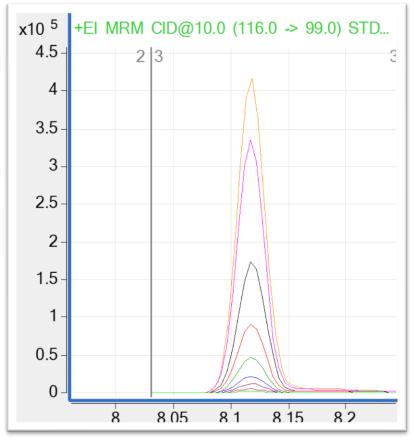

Olmesartan

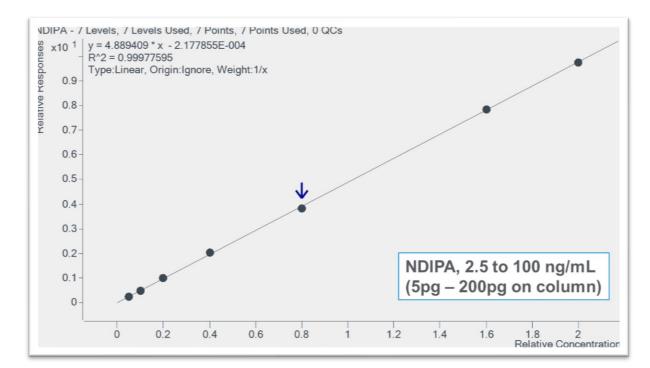


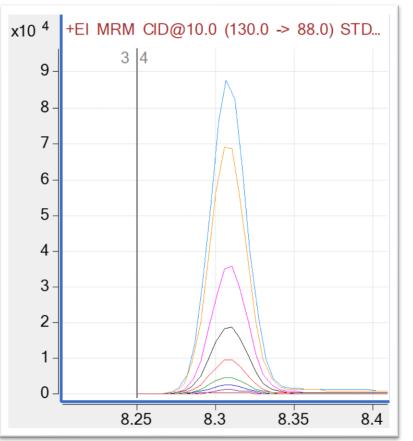

Benefits Agilent GC	Benefits Agilent GC/TQ				
Optimized methods	 Optimized method for both API and Formulation Compatible with stringent FDA regulations 				
Scalable application	 Best precision = best ion ratios = best quant results Rugged ion source design Retention Time Locking for reproducible methods over time and between labs 				
Sample prep	Sample preparation as per FDA guidelinesEasy sample preparation				
Time and costs	 Automated tuning, easy to use instrument. Efficient Quant review with MassHunter Data Integrity 				


Back to Introduction

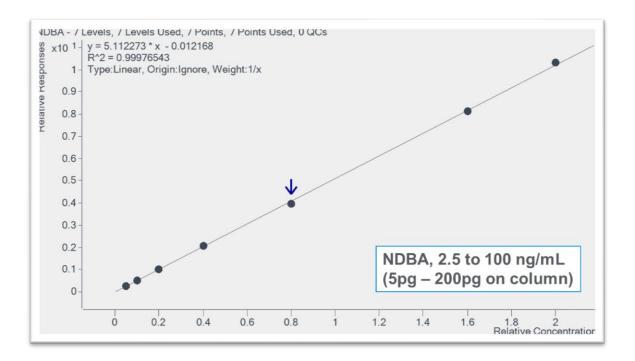


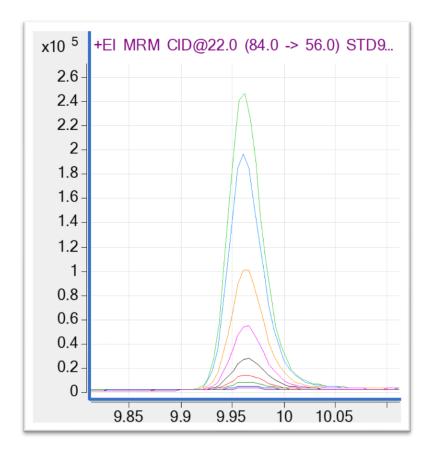


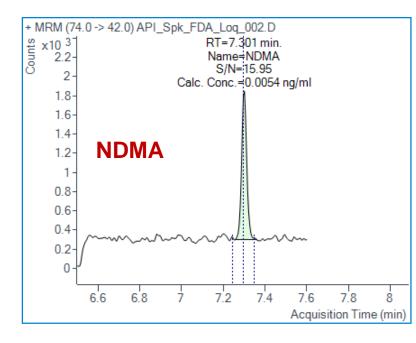


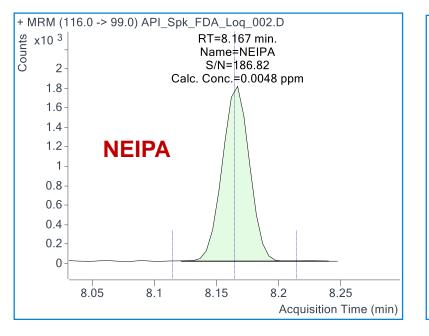


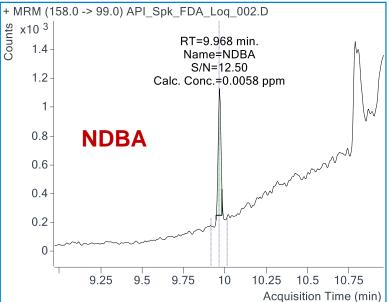
Olmesartan

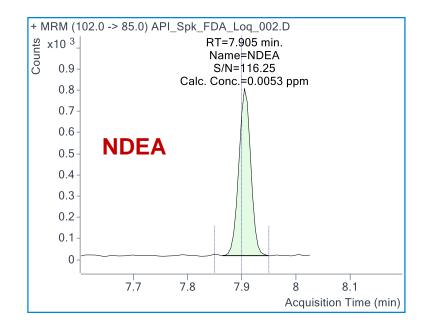


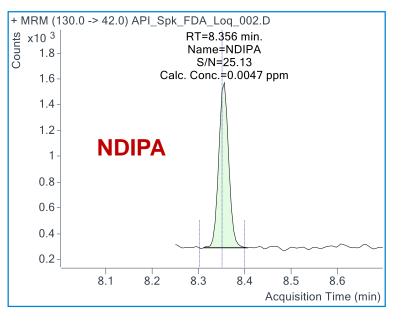











Representative Recovery % of Nitrosamine Impurities in Olmesartan at 0.005 ppm

Compound	Spiking Level (ppm)	Sample Results (ppm)	Recovery (%)
NDMA	0.005	0.0054	108
NDEA	0.005	0.0053	106
NEIPA	0.005	0.0048	96
NDIPA	0.005	0.0047	94
NDBA	0.005	0.0058	116

Pregabalin Method for Analysis

Instrument Method

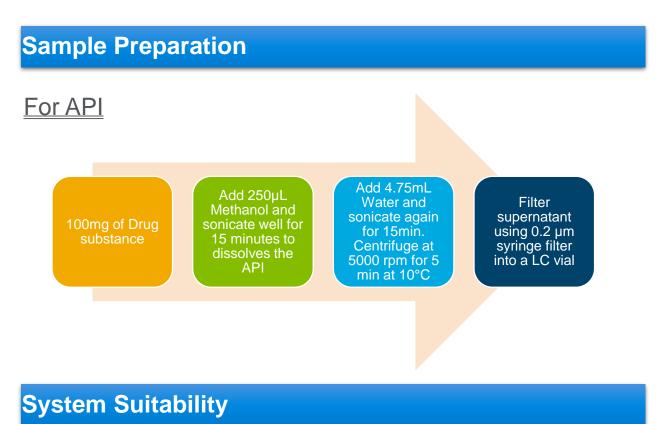
Chromatographic Condition:

Mobile Phase A:	0.2 % Formic Acid in Water
Mobile Phase B:	Methanol
Sample Diluent:	Water
Flow Rate:	0.5mL/min
Injection Volume:	20μL
Column Used:	Infinity Lab Poroshell HPH C18 3 x 150mm 4µm (P/N 693970-502T)
Column Temperature:	40°C

Gradient Program:

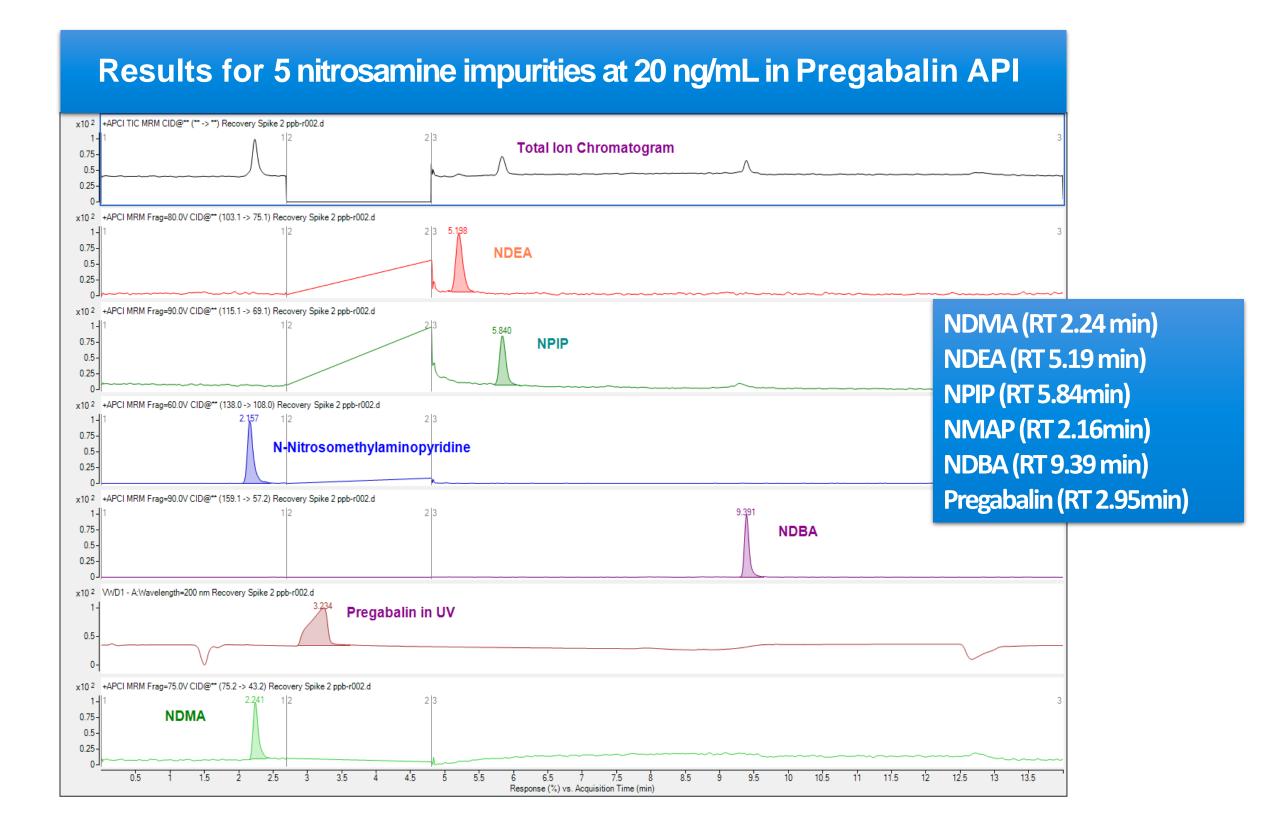
Time (Min)	Mobile Phase A	Mobile Phase B
0	95	5
5	70	30
6.2	66.5	33.5
8	5	95
11	5	95
11.1	95	5
14	95	5

Post Run Time:

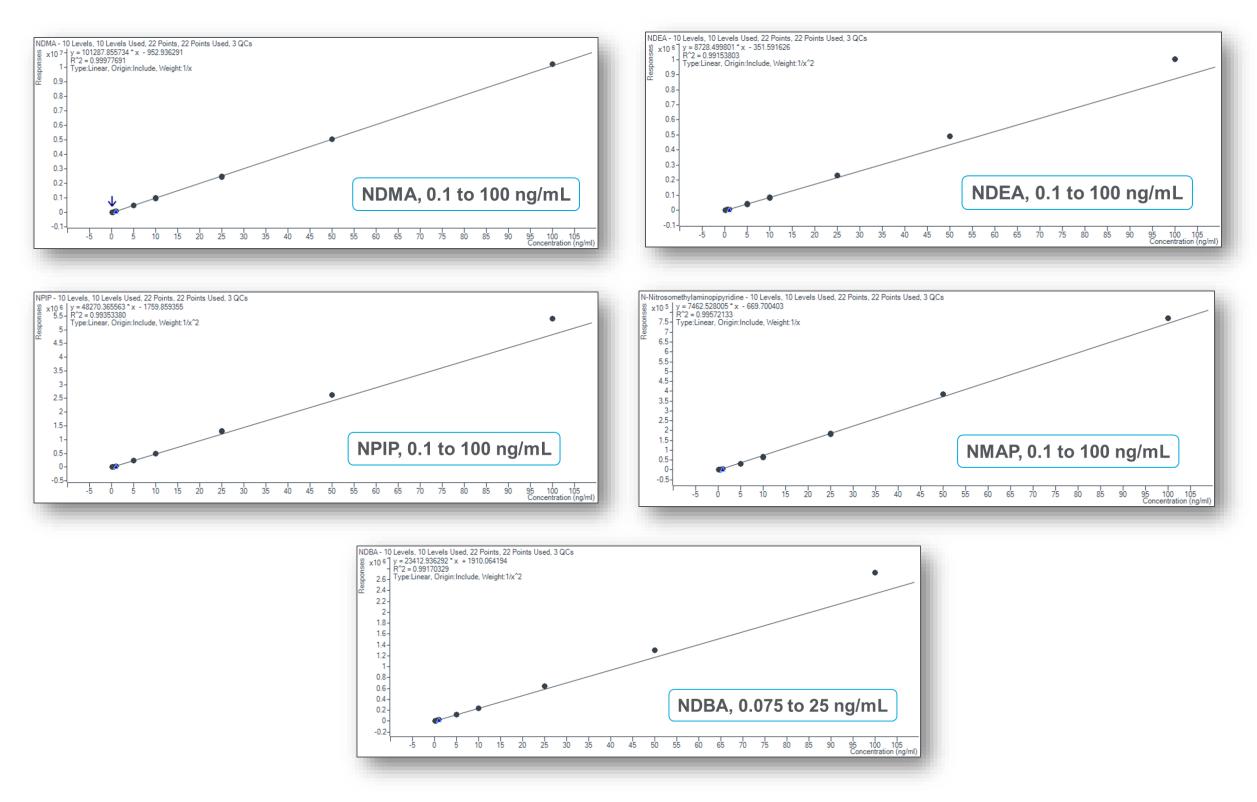

1 minutes

Atmospheric Pressure Chemical Ionization (APCI)
MRM
Positive
300 °C
6 L/min
55 psi
350 °C
4 μΑ
3000 V
0.7/0.7 (unit/unit)
F S C S Z S

Compound	Precursor Ion (m/z)	Product Ion (m/z)	Fragmentor (V)	Collision Energy(V)	CAV(V)	Polarity
NDEA	103.1	75.1	80	9	3	+
NDEA	103.1	47.1	80	17	3	+
NDMA	75.1	58	75	10	1	+
NDMA	75.1	43.1	75	18	1	+
NDBA	159.1	57.2	90	12	1	+
NDBA	159.1	41.1	90	22	3	+
NPIP	115.1	69.1	90	12	1	+
NPIP	115.1	41.2	90	24	1	+
N-nitrosomethylaminopyridine	138.1	108	60	6	5	+
N-nitrosomethylaminopyridine	138.1	79.2	60	42	5	+


Calibrations

0.1 ng/mL to 100 ng/mL


The coefficient of determination (R²) of the linear calibration curve should be \geq 0.990. The S/N ratio of the 1 ng/mL linearity standard should be \geq 10. % RSD of six replicate injections of the 1 ng/mL standard should be \leq 10

Pregabalin Calibration Curves

Pregabalin Representative recovery % of Nitrosamine Impurities

@ different concentrations using 20mg/mL sample size

Spike Conc.		F	Recovery %	, D	
(ng/mL)	NDEA	NPIP	NMAP	NDBA	NDMA
0.5	102.2	91.1	94.99	102.96	102.7
1	98.86	93.3	115	107.45	94.7
2	88.7	96.9	100.5	94.62	105.8
5	93.11	95.89	100.3	104.12	103
10	86.1	96.11	105.4	97.99	97.6
Note: Use of corr	esponding internal sta	ndards for each nitro	samines may further l	neln in any recovery is	

Note: Use of corresponding internal standards for each nitrosamines ma	ay further help in any recovery issue	÷
······································		

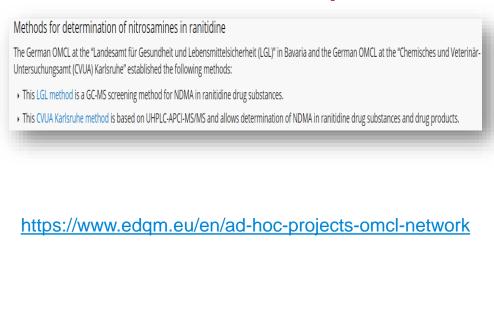
Benefits of Agilen	Benefits of Agilent LC/TQ				
 Optimized methods Optimized method for sartan drug substance Detect and quantify nitrosamine impurities limits per published FDA regulated testing method guidance 					
Scalable application	 Best precision = best ion ratios = best quant results; Rugged ion source design 				
Sample prep	 Sample preparation as per EDQM guidelines Easy sample preparation 				
Time and costs	 Automated tuning, easy to use instrument Efficient Quant review with MassHunter Data Integrity 				

Ranitidine Based Drugs

- Ranitidine is a histamine-2 receptor antagonist (acid inhibitor or H2 blocker) and is available as both prescription and over-the-counter drug to treat acid reflux. Examples of H2 receptor blockers include: Ranitidine (Zantac), Nizatidine (Axid), Famotidine (Pepcid, Pepcid AC) and Cimetidine (Tagamet, Tagamet HB).
- N-nitrosodimethylamine (NDMA) impurity was detected in some ranitidine products and the levels were found to increases with time and temperature, and thus ranitidine drugs were recently recalled from the U.S. market
- Regulatory agencies (for e.g. including US Food and Drug administration (US FDA)) provided guidance on the detection and quantification of NDMA impurity in ranitidine based drugs

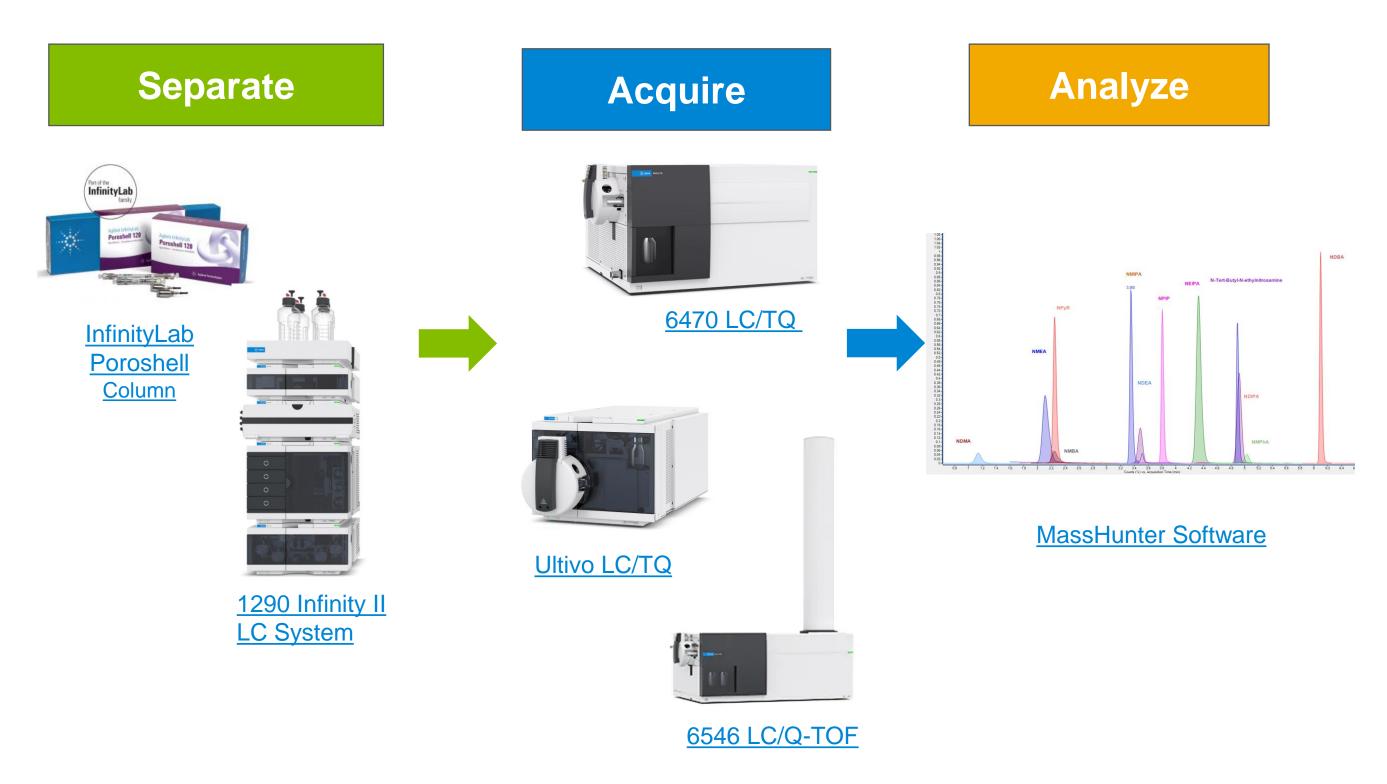
US FDA

FDA-published testing method to provide an option for regulators and industry to detect NDMA impurities The link below is to an FDA-published testing method to provide an option for regulators and industry to detect nitrosamine impurities in ranitidine drug substances and drug products. This method should be validated by the user if the resulting data are used to support a required quality assessment of the API or drug product, or if the results are used in a regulatory submission. LC-HRMS method: an LC-MS method for the detection of NDMA in ranitidine drug substance and drug products. This method is based on a triple-quadrupole MS platform. LC-MS/MS method: An alternative method is based on a triple-quadrupole MS platform.


HAS, Singapore

Updates on impurities in ranitidine products

HSA would like to update the public on our actions and investigations into the contamination of ranitidine products with a nitrosamine impurity, N-Nitrosodimethylamine


https://www.hsa.gov.sg/announceme nts/safety-alert/updates-onimpurities-in-ranitidine-products

Council of Europe

Ranitidine Mutagenic Impurity Analysis LC/MS Workflow Solution

Agilent LC/MS Solution for NDMA Analysis in Ranitidine Based Drugs

Typical LC Configuration

Agilent 1290 Infinity II High-Speed Pump (G7120A)

Agilent 1290 Infinity II Multisampler (G7167B)

Agilent 1290 Infinity II Multicolumn Thermostat (G7116B)

Agilent 1290 Infinity II Variable Wavelength Detector (G7114B)

Application Area		
Analyte	NDMA	
Matrices	Ranitidine drug substances	
Customers Pharmaceuticals and contract labs		

Columns and supplies

Columns: Infinity Lab Poroshell HPH C18 3 x 150mm 4µm (P/N 693970-502T)

HPLC Vials and Caps: Vial, screw 2mL Amber p/n 5182-0716 and Cap p/n 5183-2077

Syringe Filter Paper: 5190-5261 (PVDF, 13mm 0.2 µm)

Highlights – LC/MS/MS approaches

Easy to operate

Quick implementation in labs

Optimized methods

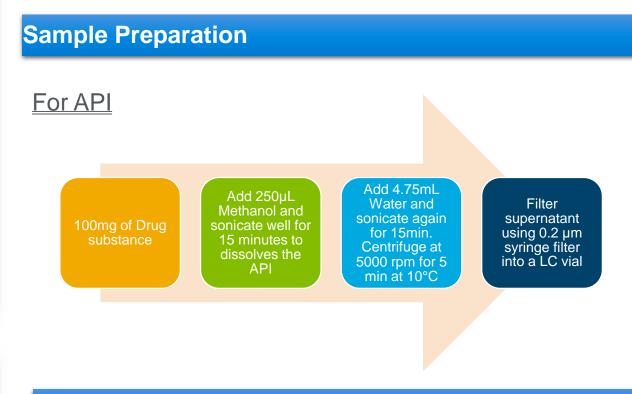
□Sample size used as per US FDA recommendations

Easy sample preparation

Ranitidine API elutes after NDMA so diverter valve programmed accordingly

Ranitidine Method for Analysis

Instrument Method

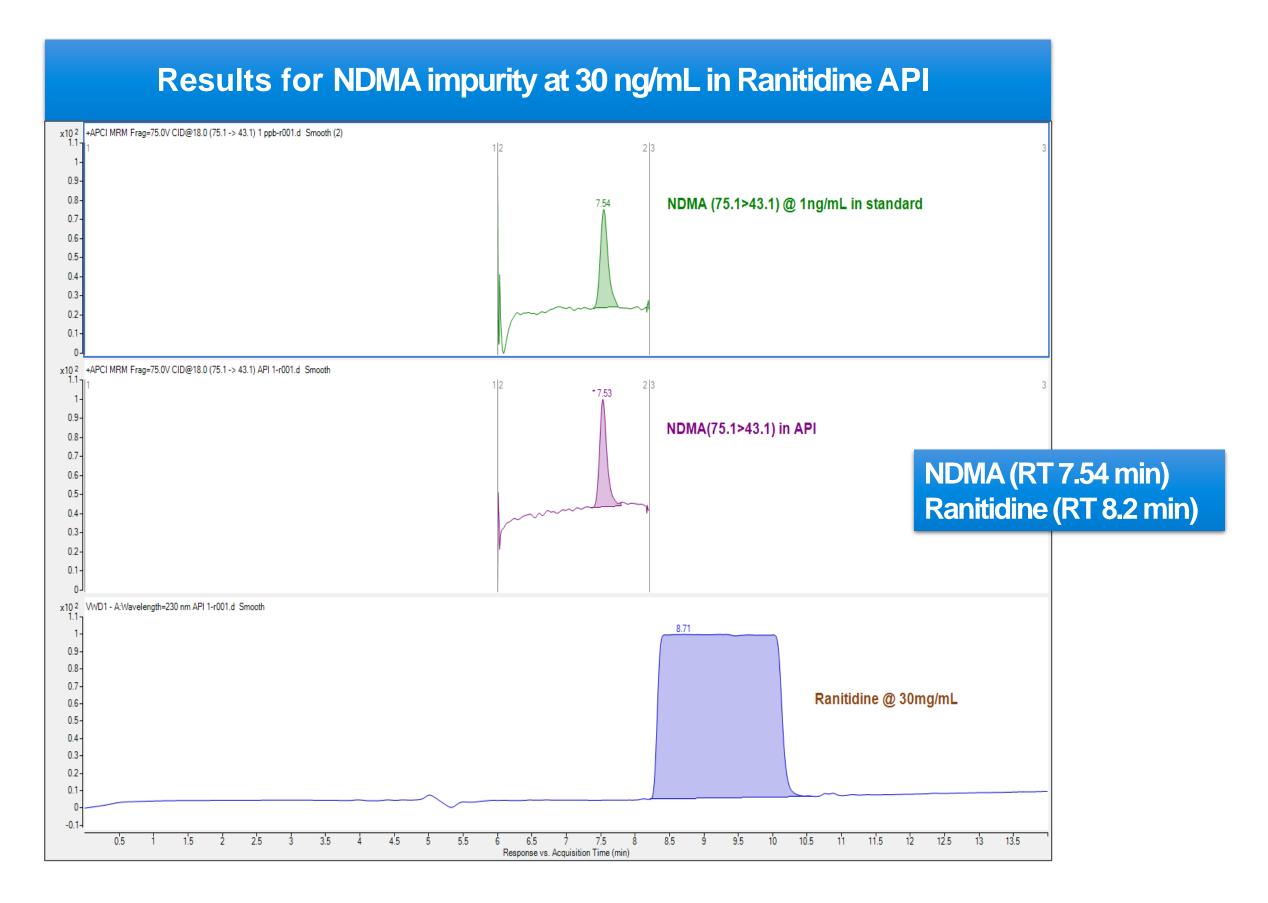

Parameter	Value				
Instruments	Agilent 1290 Infinity II high speed pump (G7120A) Agilent 1290 Infinity II multisampler (G7167B)				
	Agilent 1290 In	finity II multic	olumn thermostat	t (G7116B)	
	Agilent 1290 Infinity II variable wavelength detector (G7114B)				
Needle wash	80:20, Methano	ol: Water			
Sample diluent	Water				
Multisampler temperature	6 ± 2 °C				
Injection volume	20 µL				
Analytical column	Agilent InfinityL 693975-702)	Agilent InfinityLab Poroshell HPH-C18, 4.6 × 150 mm, 2.7 μm (p/n			
Column temperature	40 °C				
Mobile phase A	0.1 % formic ac	id in water			
Mobile phase B	0.1 % formic ac	id in Methano	əl 🛛		
Flow rate	0.3 mL/min				
Gradient					
	Time (min)	% A	% B	Flow (mL/min)	
	0	95	5	0.3	
	6	92	8	0.3	
	6.1	92	8	0.5	
	11	5	95	0.5	
	11.1	5	95	0.3	
	11.2 95 5 0.3				
	14	95	5	0.3	
Stop time	14 minutes				
Post time	1 minutes				
UV Wavelengths	230 nm, 300 nn	n			

Agilent 6470A triple quadrupole LC/MS
Atmospheric Pressure Chemical Ionization (APCI)
MRM
Positive
300 °C
5 L/min
35 psi
350 °C
4 μΑ
4000 V
0.7/0.7 (unit/unit)
200 ms

Compound	Precursor Ion (m/z)		Fragmentor (V)	Collision Energy(V)	CAV(V)	Polarity
NDMA(Quantifier)	75.1	43.1	75	18	1	+
NDMA(Qualifier)	75.1	58.1	75	10	1	+

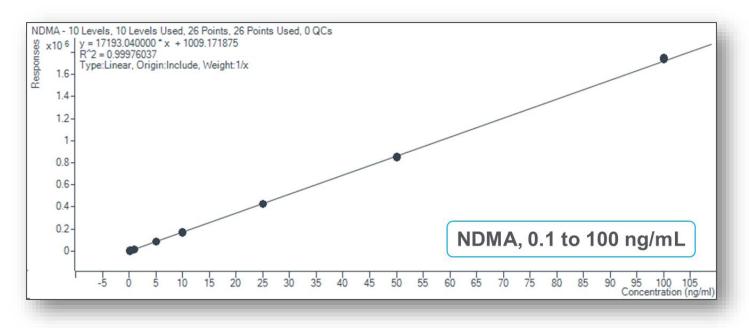
Calibrations

0.1 ng/mL to 100 ng/mL



System Suitability

The coefficient of determination (R^2) of the linear calibration curve should be ≥ 0.990 . The S/N ratio of the 1 ng/mL linearity standard should be ≥ 10 . % RSD of six replicate injections of the 1 ng/mL standard should be ≤ 10



Ranitidine

Ranitidine Calibration Curve

Representative recovery % of NDMA impurity @ different concentrations using 30mg/mL sample size

Nitrosamine Impurity	Spiked Concentration (ng/mL) mixed with Ranitidine API (30 mg/mL)	Recovery %
	1.2	86.4
NDMA	3	93.3
	6	86.5

Nitrosamine Impurity	Spiked Concentration (ng/mL) in 30 mg/mL of Ranitidine Tablet	Recovery %			
NDMA	24	94.9			
	48	87.4			
 Note: Recovery experiments were performed at higher concentrations, as both the drug substance and drug product already contained NDMA in reasonable amounts. 					

• Use of corresponding internal standards for each nitrosamines may further help in any recovery issue.

Metformin-Based Drugs

- Metformin is an oral diabetes medicine to help control blood sugar levels
- N-nitrosodimethylamine (NDMA) impurity was detected in some metformin drugs at an unacceptable intake limits, and thus certain metformin products were recently recalled from the U.S. market
- Regulatory agencies (for e.g. US Food and Drug administration (US FDA)) provided guidance on the detection and quantification of NDMA impurity in metformin drugs

US FDA

FDA-published testing method to provide an option for regulators and industry to detect NDMA impurities

The links below are to FDA-published testing methods to provide an option for regulators and industry to detect nitrosamine impurities in metformin drug substances and drug products. These methods should be validated by the user if the resulting data are used to support a required quality assessment of the API or drug product, or if the results are used in a regulatory submission.

- LC-HRMS method: an LC-MS method for the detection of NDMA in metformin drug substance and drug products.
- LC-ESI-HRMS method: an LC-HRMS method for the measurement of amounts of eight nitrosamine impurities in metformin drug substance and drug products

https://www.fda.gov/drugs/drug-safety-andavailability/fda-updates-and-pressannouncements-ndma-metformin

HSA, Singapore Update on impurities in

Update on impurities in metformin products

HSA would like to update the public on our actions and investigations into the contamination of metformin products with a nitrosamine impurity, N-nitrosodimethylamine (NDMA). Metformin is an oral diabetes medicine that helps control blood sugar levels. Combined with diet and exercise, metformin improves blood sugar level control in adults with type 2 diabetes mellitus.

https://www.hsa.gov.sg/announcements/safetyalert/update-on-impurities-in-metformin-products

Council of Europe

Methods for determination of nitrosamines in metformin

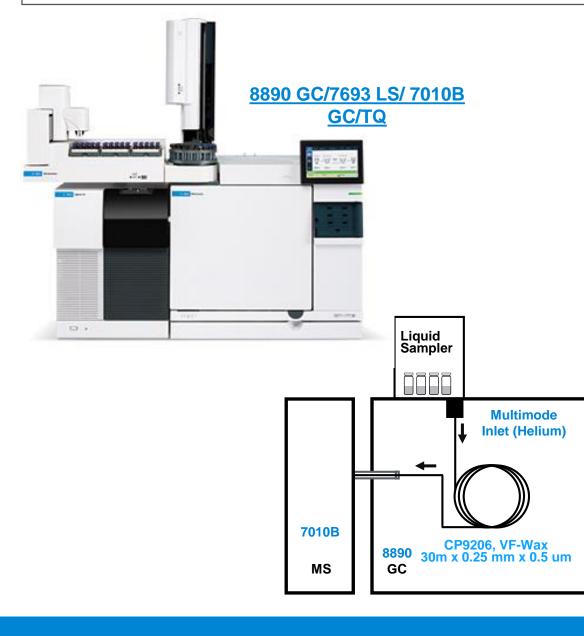
The German OMCL at the "Landesamt für Gesundheit und Lebensmittelsicherheit (LGL)" in Bavaria and at the "Chemisches und Veterinär-Untersuchungsamt (CVUA) Karlsruhe" established the following methods:

- This LGL method is a GC-MS method for the determination of NDMA in metformin drug substances and drug products.
- NEW This CVUA Karlsruhe method is a GC-MS/MS for the determination of NDMA in metformin drug substances and drug products.

The Swissmedic method « 31_PV_171_Nitrosamine by_GC_MS_MS_V01 EN » published above for Sartan preparations can be applied for Metformin APIs and Finished Products using the modifications as described in the following instructions released by the Swissmedic OMCL on 20/2/2020.

<u>https://www.edqm.eu/en/ad-hoc-projects-omcl-</u> network#Methods%20for%20determination%20of%20nitrosamines%20in%20metformin

Metformin Mutagenic Impurity Analysis GC/MS Workflow Solution


8890 GC/7693 LS/ 7010B GC/TQ

MassHunter Software

Agilent GC/MS Solution for Analysis of Nitrosamines in

Typical Cor	figuration				
Add 88	90 GC and ALS with one	of the MS Options			
G3540A	Agilent 8890 GC System	112, 201, 313 (for TQ only)			
G 4513A	7693A Autoinjector	NO OPT			
G4514A	7693A Tray, 150 Vial	NO OPT			
MS Option 1					
G7012BA	7010B Quadrupole MS/MS I Bundle	El #010 (optional),245			

Application Area		
Analytes	NDMA, NDEA, NEIPA, NDIPA, NDBA	
Matrices	Metformin drug substances and drug products	
Customers	Pharmaceuticals and contract labs	

Columns and supplies

Columns J&W DB-WAX GC Column, 30 m, 0.25 mm, 0.5 µm, 7inch cage (<u>CP9206</u>)

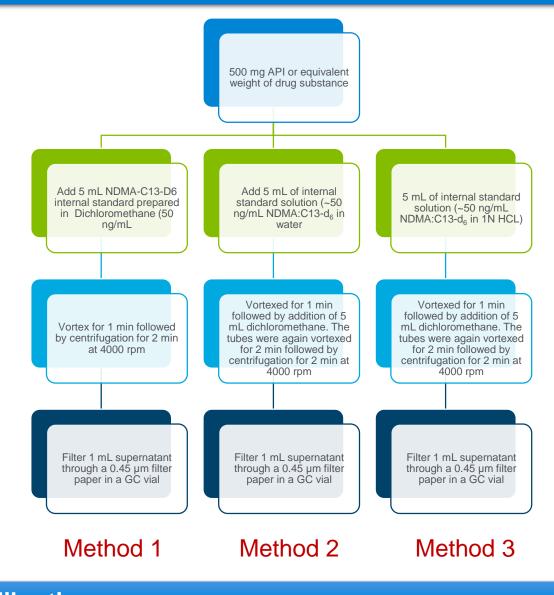
GC Vials and Caps: Screw top MS analyzed vial kit (5190-2277)

Syringe Filter Paper: Nylon, 0.45 µm (5190-5091)

GC Inlet Liner: Ultra Inert, splitless, single taper, glass wool (5190-2293)

Highlights – GC/MS/MS approaches

- □ Cost effective, easy to use
- Quick implementation in labs
- Optimized methods and RTL based MRMs
- □ More API can be used (100 mg/mL or more) for Sample prep.
- □ APIs is insoluble in Dichloromethane, so doesn't overload column
- Easy sample preparation



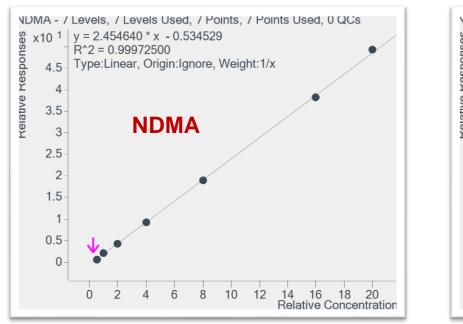
GC/MS Method for Analysis

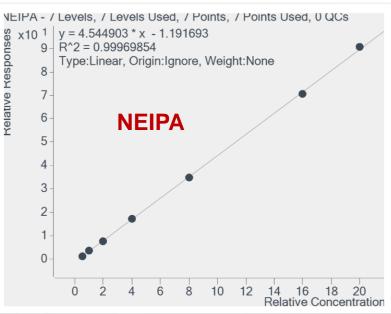
Instrument Method					
ALS	GC	MS			
Injection Volume: 2µL	Carrier Gas: He 1mL/min	El Mode			
Parameter	Value				
MMI injection mode	Pulsed splitless: 12.285 psi unt	Pulsed splitless: 12.285 psi until 0.5 min			
Inlet temperature	250 °C				
	40 °C (1.5 min)				
Oven temperature program	20 °C/min to 200 °C (0 min)				
	60 °C/min to 250 °C (3 min)				
Total run time	12.33 min				
MS transfer line temperature	250 °C				

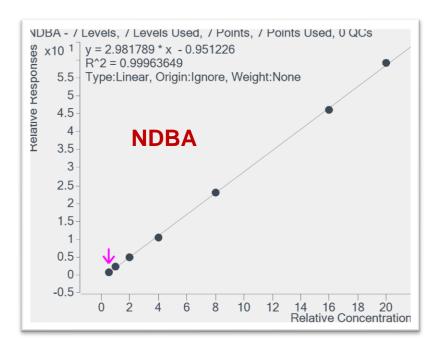
Parameter	Value		
Source temperature	250 °C		
Quadrupole temperature	Q1 and Q2 = 150 °C		
MS1 and MS2 resolution	All compounds Unit		
Collision gas flow	Nitrogen at 1.5 mL/r	min,	
Quenching gas flow	Helium at 4 mL/min		
Quant./qual. transitions (FDA method)	Start time: 6.5 min NDMA	$74 \rightarrow 44.1$, CE 6, dwell 150 ms $74 \rightarrow 42.1$, CE 22, dwell 50 ms NDMA:C13-d6 82 \rightarrow 48, CE 20, dwell 100 ms	
	Start time: 7.60 min NDEA	102 →85, CE 4 V, dwell 80 ms 102 →56.1, CE 18 V, dwell 80 ms 102 →44.1, CE 14 V, dwell 80 ms	
	Start time: 8.03 min NEIPA	116 →99.1, CE 4 V, dwell 80 ms 71 →56.1, CE 4 V, dwell 80 ms 116 →44.1, CE 14V, dwell 80 ms	
	Start time: 8.25 min NDIPA	130 →88, CE 4 V, dwell 150 ms 130 →42, CE 10 V, dwell 150 ms	
	Start time: 8.70 min NDBA	158 →99.1, CE 2 V, dwell 75 ms 84 →56.1, CE 20 V, dwell 75 ms 84 →42.1, CE 14 V, dwell 75 ms 158 →141.2, CE 2 V, dwell 75 ms	

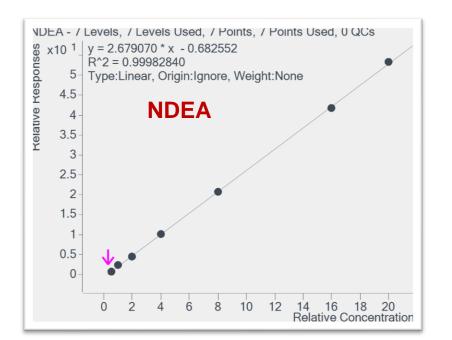
Sample Preparation

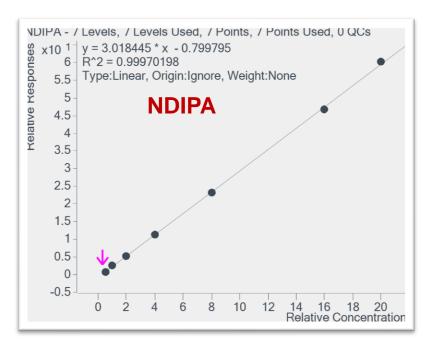
Calibrations

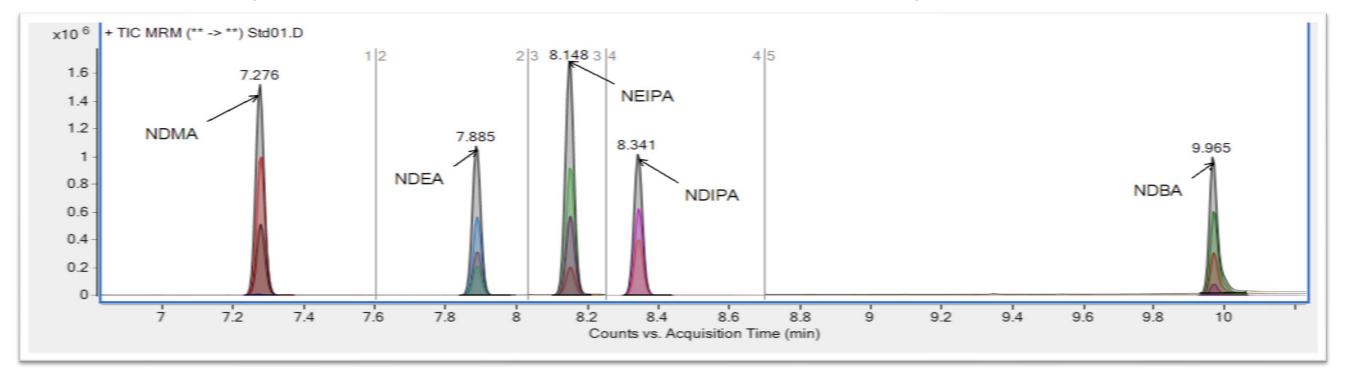

2.5 ng/ml, 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml, 80 ng/ml and 100 ng/ml each prepared in Dichloromethane containing 50 ng/mL of NDMA –C13-D6

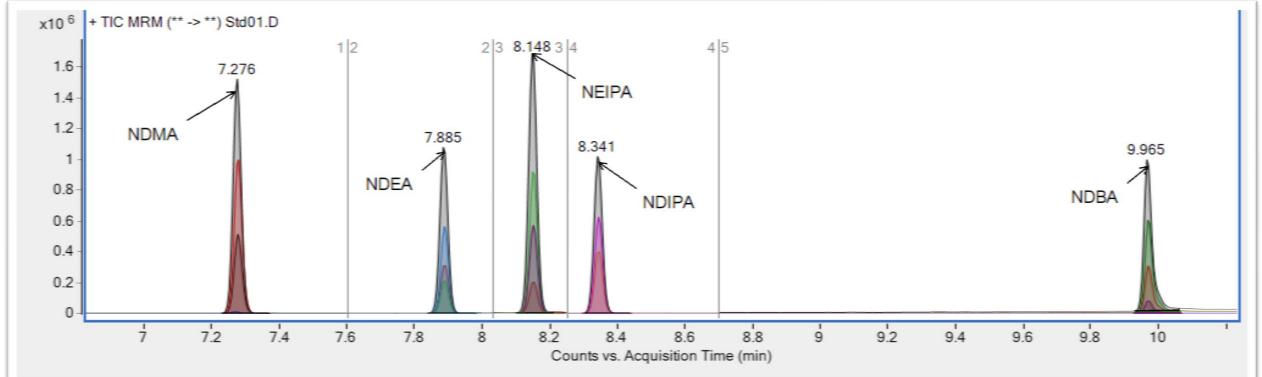

System Suitability


The coefficient of determination (R2) of the linear calibration curve should be \ge 0.998. The S/N ratio of the 5 ng/mL linearity standard should be \ge 10. % RSD of six replicate injections of the 40 ng/mL standard should be \le 5



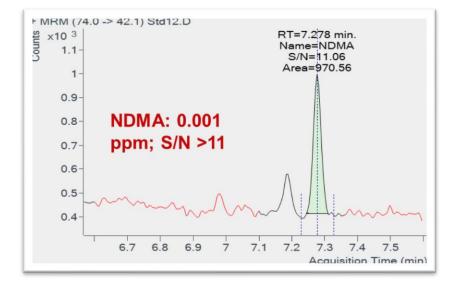

Calibration Curves

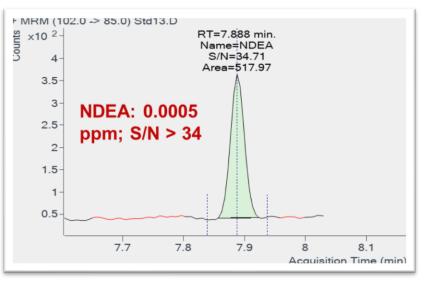


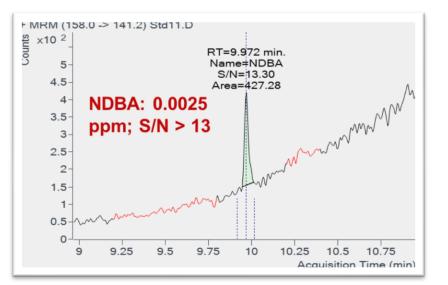


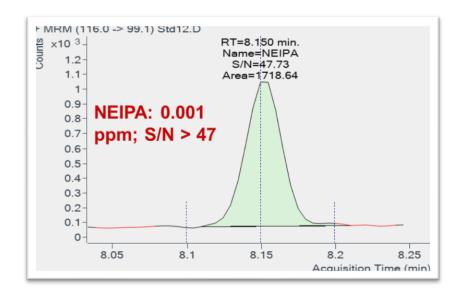
Metformin MRM Chromatogram of 5 Nitrosamine Impurities

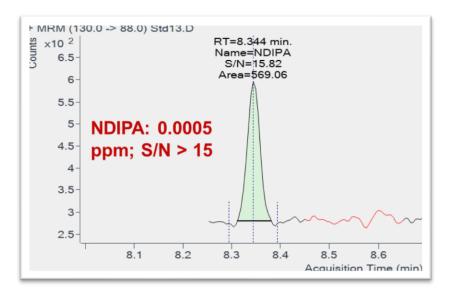
Extracted MRM chromatogram (quant and qual transition) of lowest calibration standard at 2.5 ng/mL mix of five impurities in dichloromethane.

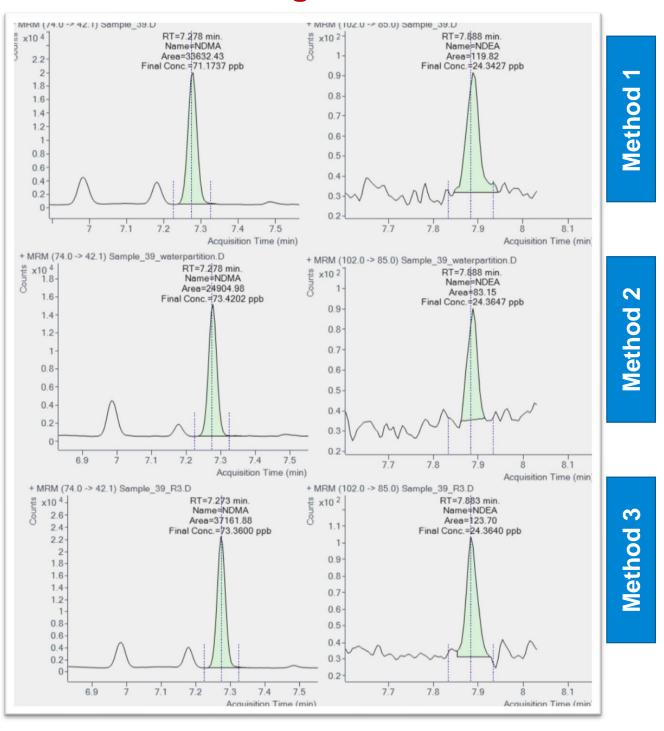



TIC chromatogram overlay in MRM mode of 100 ng/mL of five impurities in dichloromethane.



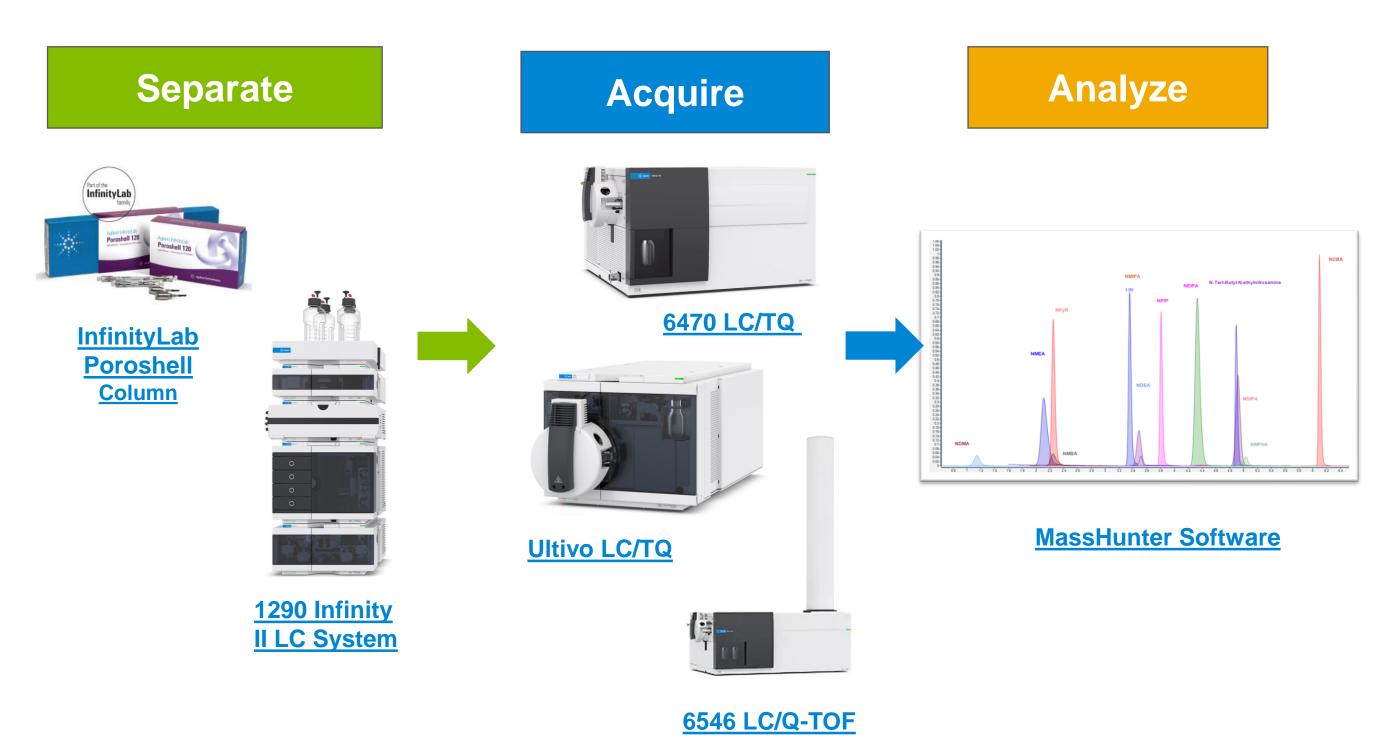

Back to Introduction


LOQ of Nitrosamine Impurities in Metformin



NDMA and NDEA in Metformin Samples

MRM (74.0 -> 42.1) Sample_36.0 + MRM (102.0 -> 65.0) Sample_36.0 RT=7.883 min. RT=7.278 min x104 x10² Name=NDMA Name=NDFA Area=135.67 Area=30888.87 8 1 Final Conc.=67.3583 ppb Final Conc.=24.3912 ppb 1.8 $\overline{}$ 1.6 0.9 Method 1.4 0.8 1.2-0.7 1 0.6 0.8-0.5 0.6-0.4 0.4-0.2 0.3 0 0.2 6.9 7.5 7.1 7.2 7.3 7.4 7.7 7.8 7.9 8.1 8 Acquisition Time (min) Acquisition Time (min MRM (74.0 -> 42.1) Sample_38_waterpartition.D + MRM (102.0 -> 85.0) Sample_38_waterpartition.D RT=7.278 min RT=7.888 min. x10⁴ x10¹ Name=NDMA Name=NDEA 1.6 Area=22578.70 Area = 78.44 8.5 N Final Conc.=68.4608 ppb Final Conc.=24.3554 ppb 1.4 Method 75 1.2 6.5 6 0.8 5.5 5 0.6 4.5-0.4-3.5-0.2 2.5 0 7.7 8.1 74 7.8 7.9 6.9 7.1 72 73 Acquisition Time (min) Acquisition Time (min MRM (74.0 -> 42.1) Sample_38_R3.D + MRM (102.0 -> 85.0) Sample_38_R3.D RT=7.278 min. x104 RT=7.888 min. € x10² Name=NDMA Name=NDEA Area=34675.17 $\mathbf{\mathcal{O}}$ 2.2 Area=113.08 1.2 Final Conc.=69.2073 ppb Final Conc.=24.3483 ppb 2 Method 1.1 1.8 1.6 0.9 1.4 0.8 1.2 0.7 1 0.6 0.8-0.5 0.6-0.4 0.4-0.3 0.2-0.2 0 6.9 7.1 7.2 7.3 7.4 7.7 7.8 7.9 8.1 8 Acquisition Time (min) Acquisition Time (min


Drug Substance

Drug Product

Metformin Mutagenic Impurity Analysis LC/MS Workflow Solution

Agilent LC/MSMS Solution for Nitrosamines Analyses in Metformin Based Drugs

Typical LC Configuration

Agilent 1290 Infinity II High-Speed Pump (G7120A)

Agilent 1290 Infinity II Multisampler (G7167B)

Agilent 1290 Infinity II Multicolumn Thermostat (G7116B)

Agilent 1290 Infinity II Variable Wavelength Detector (G7114B)

Application Area			
Analytes	NDMA, NDEA, NEIPA, NDIPA, NDPA, NMPA NDBA and NMBA		
Matrices	Metformin drug substances		
Customers	Pharmaceuticals and contract labs		

Columns and supplies

Columns: InfinityLab Poroshell HPH-C18, 4.6 × 150 mm, 2.7 µm (p/n 693975-702)

HPLC Vials and Caps: Vial, screw 2mL Amber p/n 5182-0716 and Cap p/n 5183-2077

Syringe Filter Paper: 5190-5261 (PVDF, 13mm 0.2 µm)

Highlights – LC/MS/MS approaches

Easy to operate

Quick implementation in labs

Optimized methods

□Sample size used as per US FDA recommendations

Easy sample preparation

Metformin API elutes before all nitrosamines, so diverter valve programmed accordingly

Metformin Method for Analysis

Instrument Method

Mobile phase A:0.1 % formic acid in water

Mobile phase B:0.1 % formic acid in Methanol

Sample diluent: Water: Methanol (95:5)

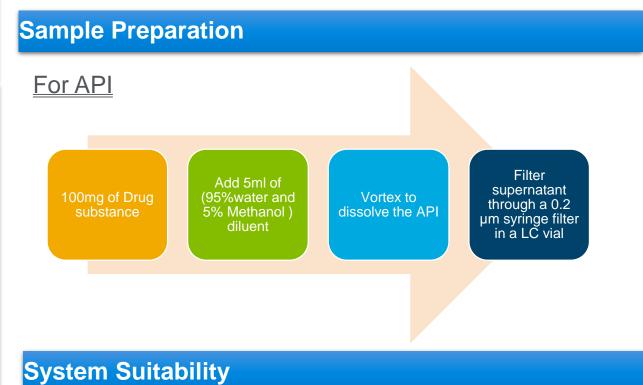
Multisampler temperature:10°C

Injection volume:20 µl

Column temperature:40 °C

Analytical column: Agilent Infinity Lab Poroshell HPH-C18, 4.6 × 150 mm, 2.7 µm (p/n:693975-702)

Flow rate: 0.5 mL/min

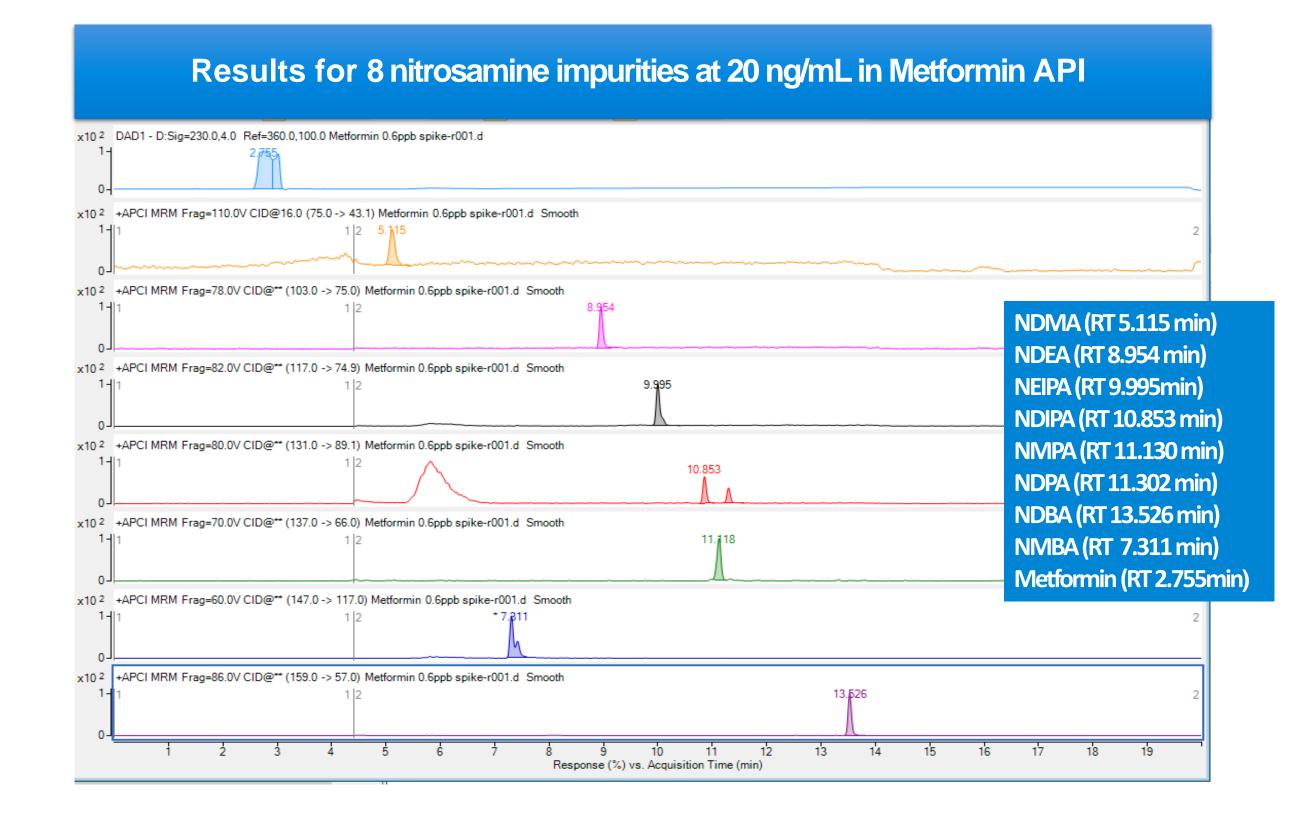

Time	%A	%B	Flow(0.5ml/min)
0	95	5	0.5
2	95	5	0.5
7	40	60	0.5
10	25	75	0.5
11	10	90	0.5
16.5	10	90	0.5
16.6	95	5	0.5
20	95	5	0.5

Instrument	Agilent 6470 Triple Quadrupole mass spectrometer
lon source	Atmospheric Pressure Chemical Ionization (APCI)
MS/MS mode	MRM
lon mode	Positive
Drying gas	300 °C
temperature	300 -C
Drying gas flow	7 L/min
Nebulizer pressure	25 psi
APCI heater	350 °C
APCI needle	4 μΑ
positive	+ μΛ
Capillary voltage,	4000 V
positive	4000 V
MS1/MS2 resolution	0.7/0.7 (unit/unit)
Dwell time	50 ms

Compound	Precursor Ion (m/z)	Product Ion (m/z)	Dwell time (ms)	Fragmentor (V)	Collision Energy (V)	CAV (V)	Polarity
NDMA(Quantifier)	75	43.1	50	110	16	3	+
NDMA (Qualifier)	75	58	50	80	10	2	+
NMBA(Quantifier)	147	117	50	60	4	2	+
NMBA(Qualifier)	147	44	50	60	12	2	+
NDEA(Quantifier)	103	75	50	78	12	4	+
NDEA(Qualifier)	103	47	50	78	20	4	+
NEIPA(Quantifier)	117	74.9	50	82	8	8	+
NEIPA(Qualifier)	117.1	47.1	50	82	15	8	+
NDIPA(Quantifier)	131	89.1	50	80	5	4	+
NDIPA(Qualifier)	131	43	50	80	20	4	+
NDPA(Quantifier)	131	89.1	50	80	5	4	+
NDPA(Qualifier)	131	43	50	80	20	4	+
NMPA(Quantifier)	137	66	50	70	20	5	+
NMPA(Qualifier)	137	107	50	70	10	5	+
NDBA(Quantifier)	159.1	57	50	86	12	4	+
NDBA(Qualifier)	159.1	41.3	50	86	20	4	+

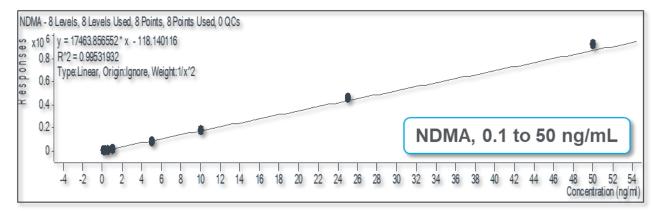
Calibrations

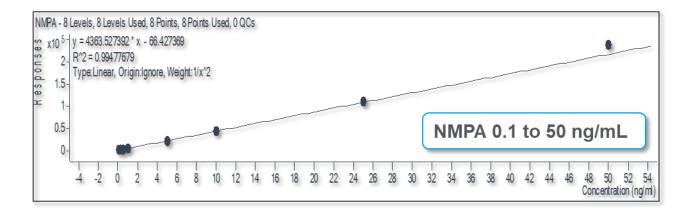
0.1 ng/mL to 50 ng/mL

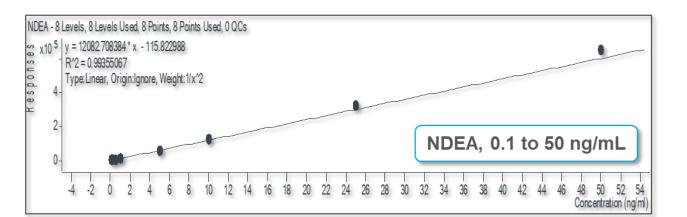


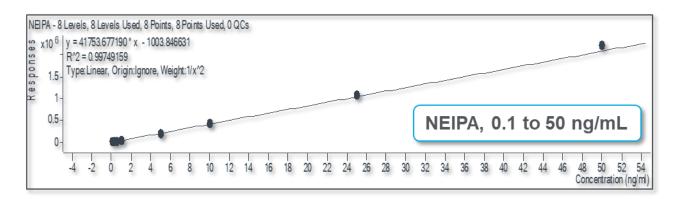
The coefficient of determination (R2) of the linear calibration curve should be \geq 0.990.

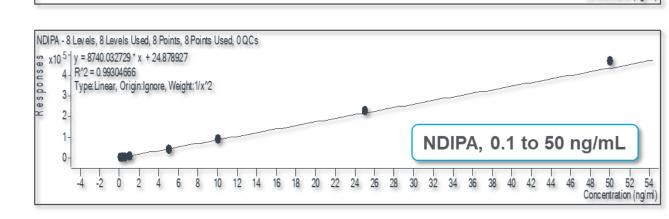
The S/N ratio of the 1 ng/mL linearity standard should be \ge 10. % RSD of six replicate injections of the 1 ng/mL standard should be \le 10

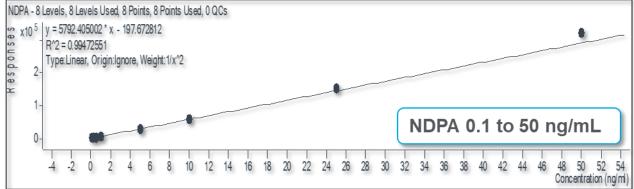

Back to Introduction

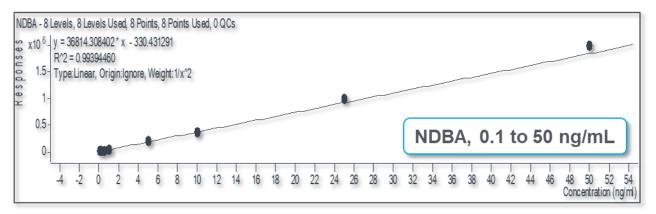


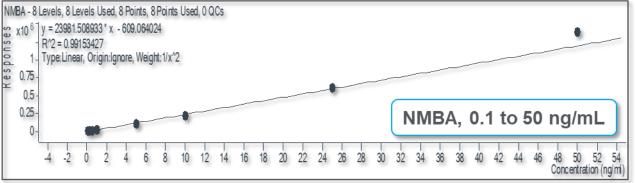





Metformin Calibration Curves



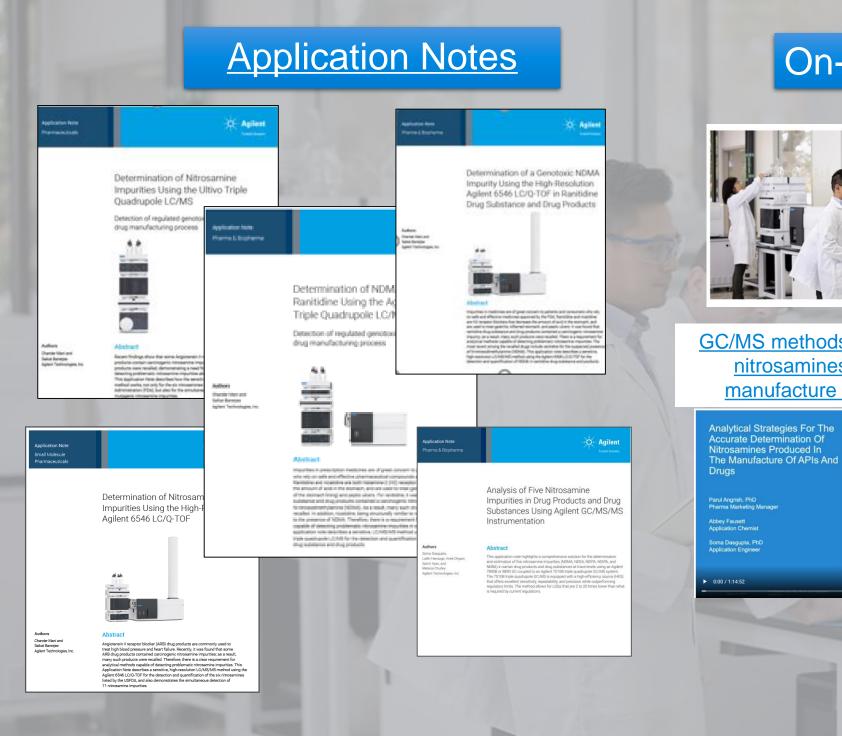




Representative Recovery % of Nitrosamine Impurities

@ 0.5ng/mL (0.025ppm) concentration using 20mg/mL sample size

Nitrosamine Impurities	Average Recovery %
NDMA	101.2
NMBA	97.1
NDEA	98.4
NEIPA	94.9
NDIPA	102.6
NMPA	101.5
NDPA	95.8
NDBA	102
	NDMA NMBA NDEA NEIPA NDIPA NMPA NDPA


Note: Use of corresponding internal standards for each nitrosamines may further help in any recovery issue.

Benefits of Agilent	t LC/TQ

Optimized methods	 Optimized method for metformin drug substance Detect and quantify nitrosamine impurities limits per published FDA regulatory testing method guidance
Scalable application	 Best precision = best ion ratios = best quant results Rugged ion source design
Sample prep	 Sample preparation as per EDQM guidelines Easy sample preparation
Time and costs	 Automated tuning, easy to use instrument. Efficient Quant review with MassHunter Data Integrity

Learn More

On-Demand Webinars

<u>GC/MS methods for determination of</u> <u>nitrosamines produced in the</u> <u>manufacture of APIs and drugs</u>

Watch Video

On-Demand Webinar

nitrosamines in APIs and drug products.

<u>LC/MS methods for</u> <u>determination of nitrosamines</u> <u>produced in the manufacture</u> of APIs and drugs

LC/MS Based Approaches for the Analysis of Nitrosamines in APIs and drugs

The U.S. FDA published analytical testing methods to provide options for

regulators and industry to detect nitrosamine impurities in ranitidine drug

substances and products. In this webinar, you will learn about the latest

analytical strategies for the accurate identification and quantification of

regulations for the evaluation of nitrosamines and the relevant LC/MS based

Analytical Strategies For The Accurate Determination Of Nitrosamines Produced In The Manufacture Of APIs And Drugs

Chander Mani Application Engineer

Publication No. 5994-2393EN Printed in USA, September 14, 2020

