Analysis of Cannabis for Pesticide Residues by GC/Q-TOF

Philip L. Wylie,¹ <u>Chandrani Gon²</u>, Mohamed Radwan², Mei Wang,² Ikhlas Khan^{2,3} and Mahmoud A. ElSohly^{2,4,5}

¹Agilent Technologies, Wilmington DE USA; ²National Center for Natural Products Research,; ³Department of Biomolecular Sciences, ⁴Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, School of Pharmacy, MS 38655, USA, ⁵ElSohly Laboratory Inc., 5 Industrial Park, Oxford, MS, 38655 USA

Introduction

In the United States, the use of cannabis for medical purposes has been legalized in 29 states. Eight states (CO, WA, OR, NV, CA, AK, ME, and MA) have approved recreational use.

Like other crops, marijuana is vulnerable to destructive insects and fungus. Unlike other crops, it is illegal under federal law and therefore the EPA has not approved any pesticides or fungicides for it and there are no federal guidelines for how much residual pesticide can be left on marijuana products.

In 2017, Steep Hill Labs in Berkeley, one of the nation's largest cannabis testing laboratories, tested 44 marijuana products for 16 pesticides. They found 41 out of 44 samples (93 %) tested positive for pesticides at levels high enough that those products would've been banned for sale in some other states that currently regulate the use of pesticides in marijuana products.

In this research, we tested pesticide residues in 16

Results and Discussion

Figure 3. Typical chromatogram for a marijuana QuEChERS extract with added analyte protectants.

Pesticide PCDL Spectrum of

tris(β-chloropropyl)phosphate

Extracted Ion Chromatograms for the six most significant ions

Figure 4. The Agilent Find by Fragments software extracted the six most significant ions for each pesticide in the PCDL at it's locked RT. The sofware looks at the peak shape and RT for each extracted ion. The coelution plot shows the normalized peak heights for each ion relative to a reference ion.

Results and Discussion (Cont.)

Myclobutanil Residue in Cannabis. Myclobutanil decomposes when heated to produce HCN.

POPs in Pot: Two samples had cis- and trans-Chlordane and trans-Nonachlor

Banned for all uses in the US since 1988; Banned by Stockholm POPs Convention in 2001

Pesticides found in 16 confiscated marijuana samples and marijuana grown by the U. Mississippi Marijuana Program. Note: The fire retardants, $Tris(\beta$ -chloropropyl)phosphate & Tris(3-chloropropyl)phosphate, are found widely in dust samples and may have contaminated some of these samples while in storage or elsewhere. For samples that had residues of chlordane and nonachlor, it is likely that they were grown in soil that was contaminated in the past.

Sample	Pesticide found	Sample	Pesticide found	Sample	Pesticide found
1055	Myclobutanil	3402	DEET	3534	Benzylbenzoate
	Cypermethrin I		Dichlorvos		Cypermethrin I
	Cypermethrin III		Cypermethrin I		Phenanthrene
	Tris(b-chloropropyl)phosphate		Tris(b-chloropropyl)phosphate		Terbucarb
	DEET		trans-Chlordane		gamma-Cyhalothrin
	Terbucarb		Cypermethrin III		Acrinathrin
			Acrinathrin (Rufast)		2,6-diisopropylnaphthalene
1271	DEET		Diphenylamine		
	Fenpropathrin		trans-Nonachlor	3536	Tris(b-chloropropyl)phosphate
	2-phenylphenol		cis-Chlordane		1-Naphthol
	Phenanthrene				Phenanthrene
	Terbucarb	3452	DEET		DEET
	Fenpropathrin		Jasmone		Carbaryl
			Phenanthrene		Tris(3-chloropropyl)phosphate
2511	DEET		Tris(b-chloropropyl)phosphate		Tributylphosphate
	Cypermethrin I		Empenthrin		2,6-diisopropylnaphthalene
	Cypermethrin III				Cypermethrin I
	Tris(b-chloropropyl)phosphate	3466	Cypermethrin I		Jasmone II
	Terbucarb		Cypermethrin III		
			Acrinathrin	3551	Pentachloroanisole
3400	Phenanthrene				Tris(3-chloropropyl)phosphate
	Fluoranthene	3483	Cypermethrin III		Tris(b-chloropropyl)phosphate
	DEET		Cypermethrin I		Cypermethrin I
	Pyrene		TBP (Tributylphosphate)		Cypermethrin III
	Cypermethrin I				Phenanthrene
	Cypermethrin III	3486	Tris(3-chloropropyl)phosphate		DEET
	Terbucarb		DEET		Terbucarb
			Phenanthrene		
3401	Tris(b-chloropropyl)phosphate			3552	Tris(b-chloropropyl)phosphate
	trans-Chlordane	3507	Tris(3-chloropropyl)phosphate		Cypermethrin I
	Acrinathrin (Rufast)		Tris(b-chloropropyl)phosphate		Tris(3-chloropropyl)phosphate
	Tris(3-chloropropyl)phosphate		Cypermethrin I		2,6-diisopropylnaphthalene
	Phenanthrene		Phenanthrene		
	trans-Nonachlor		2,6-diisopropylnaphthalene	U Miss	
	2,6-diisopropylnaphthalene			Grown	No posticidos found
	cis-chlordane	3518	Cypermethrin I	GIUWII	No pesticides tourid
			Tris(b-chloropropyl)phosphate	Outdoors	
			Terbucarb		
			2,6-diisopropylnaphthalene		

confiscated marijuana samples (from medical marijuana states) as well as marijuana produced at the University of Mississippi outdoor growing facility. QuEChERS extraction was used for sample preparation followed by analysis on an Agilent 7890B/7200B GC/Q-TOF using a new pesticide PCDL and the Find by Fragments workflow in MassHunter software. This approach looks for 852 pesticides, metabolites and other contaminants in each sample.

Experimental

QuEChERS Extraction of Pesticides

Figure 1. QuEChERS extraction procedure. Result is 0.1 g of Cannabis/mL of ACN.

PCDL: Personal Compound Database & Library with 852 Pesticides and Common Contaminants

Figure 2. Personal Compound Database/Library (PCDL) containing exact mass spectrum, locked RT, CAS#, name, molecular formula, monoisotopic exact mass (and more) for 852 pesticides . The Find by Formula algorithm looks for all 852 pesticides in a sample. Figure 5. Find by Formula results screen for pesticides tentatively identified in a confiscated marijuana sample. The specific results are for Pentachloroanisole

Figure 6. Find by Formula Compound Identification Results showing some of the information available to help identify a "hit."

Figure 7. Compound Identification results for Dichlorvos showing 5 of the 6 ions with excellent coelution scores, good mass accuracy and a close RT match to the PCDL value.

Figure 8. Molecular ion isotope pattern for Dichlorvos. Note: M+* is only 1.8% of the base peak. The red rectangles show the theoretical spacing and abundance of the isotopes.

Conclusions

- Cannabis is one of the most difficult matrices to work with.
- High concentrations of cannabinoids and terpenes get extracted along with pesticides using QuEChERS extraction.
- These heavy interferences can lead to false positives.
- But, most false positives can be eliminated by looking at the fragment ion ratios, mass and RT accuracy and the molecular ion isotope pattern (when present).
- 22 pesticides & metabolites, 2 fire retardants and 3 PAHs were found in the 16 samples.
- The fire retardants, PAHs and banned pesticides likely came from environmental contamination.
- No pesticides were found in the Marijuana grown at U Miss.

L to R: Drs. Wylie, Radwan, Gon & Wang standing in front of the Marijuana Museum

Dr. ElSohly