Analysis of Fluorinated Alkyl Compounds in Bio-solid Matrix by GC/Q-TOF Mass Spectrometry

Anthony Macherone², Tom Doherty², Shoji F. Nakayama^{1, 3}, Sofia Aronova², Kidus Tadele^{1, 4}, Marc A. Mills¹ 1 U.S. Environmental Protection Agency, National Risk Management Research Laboratory; 2 Agilent Technologies; 3 National Research Council; 4 Student Service Contractor

Introduction

Abstract

Fluorotelomer alcohols are synthetic compounds used as building blocks for fluorinated polymers and could arise in the environment as intermediate degradation products from those same polymers. Furthermore, fluorotelomer alcohols oxidize to fluorinated carboxylic acids, some of which have been found to be toxic under typical environmental conditions. Sensitive and specific analytical methodology is required to study the fate and transport of fluorotelomers in the environment and gain understanding of human exposure and toxicity. Herein, we present a GC Q-TOF method for the analysis of fluorinated alkyl compounds in complex bio-solid matrix. Analyte ions were easily extracted from the heavy matrix and comparison to MRM data collected previously suggests detection limits on the order

Background

Compounds have the form $F_3C(CF_2)_{N-1}(CH_2)_MOH$ N:M FTOH is the shorthand notation

Fluorinated alkyl compounds (PFCs) studied for fate, transport, potential human exposure and toxicities

Fluorotelomer alcohols (FTOHs) degrade to PFCs both atmospherically and biologically

Some of the PFCs have been found to be toxic and widespread throughout the world

The source of the PFCs remains yet unknown Speculated:

> Wastewater treatment plants **Direct emission from manufacturers** Degradation of precursor materials

Purpose of Study

Develop robust, sensitive and selective GC/Q-TOF method in bio-solid matrix from waste water treatment plants

Study the fate and transport of fluorotelomers in the environment

Investigate degradation pathways of fluoropolymers

Gain understanding of human exposure and toxicity

Experimental

GC Conditions

15 m HP-INNOWax column (19091N-131) Oven Program 60 °C for 1 min 3 °C/min to 75 °C for 0 min 20 °C/min to 210 °C for 0 min MMI: 2 µl cold, splitless injections 65 °C (0.01 min), 300 °C/min to 250 °C Two minute post column Backflush

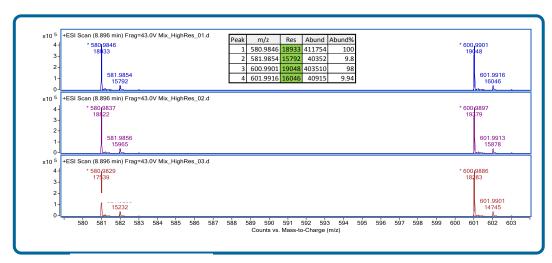
Q-TOF Conditions

Positive CI, 20% CH Dual Gain Mode Full Spectrum and MS/MS High Resolution Mode

Samples

Solvent standards, 100 ng/µl in MTBE Two bio-solid extracts prepared in EtOAc One 1% and the other 5% lime treated Each extract split 50/50 One spiked with analytes and IS @ 50 ng/ml the other not spiked

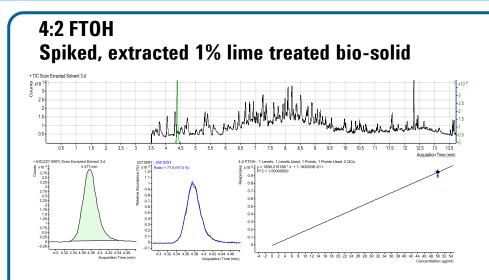
ID	Solvent	Vol (mL)	Description
1	Ethyl acetate	1	Extracted solvent, 1% lime treated biosolid
2	Ethyl acetate	1	Standards in extracted solvent
3	Ethyl acetate	1	Extracted solvent, 5% lime treated biosolid
4	Ethyl acetate	1	Standards in extracted solvent

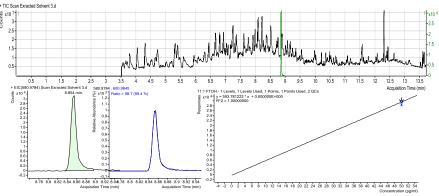

Analytes and Internal Standards: Accurate Mass +H

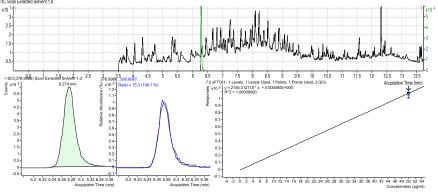
Acronym	Туре 🔽	r.t. 🗊	Exact Mass + H 🔽
4:2 FTOH	Target	4.078	265.0269
5:1 FTOH	Target	5.221	301.0081
6:2 FTOH	Target	5.773	365.0206
6:1 FTOH	Target	6.188	351.0049
7:2 sFTOH	Target	6.237	415.0174
7:1 FTOH	Target	6.981	401.0017
8:2 MFTOH	ISTD	7.449	469.0334
8:2 FTOH	Target	7.471	465.0142
8:1 FTOH	Target	7.598	450.9985
9:1 FTOH	Target	8.098	500.9953
10:2 FTOH	Target	8.470	565.0078
10:1 FTOH	Target	8.523	550.9921
11:1 FTOH	Target	8.886	600.9889
d7-MeFOSE	ISTD	11.868	565.0466
MeFOSE	Target	11.889	558.0026
d9-EtFOSE	ISTD	11.897	581.0748
EtFOSE	Target	11.928	572.0183

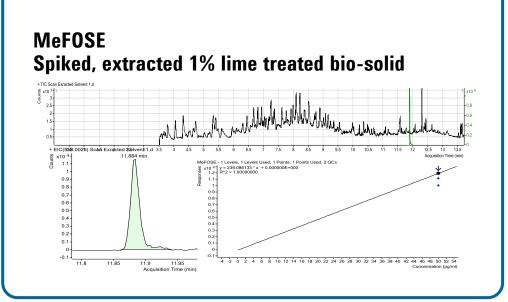
Results and Discussion

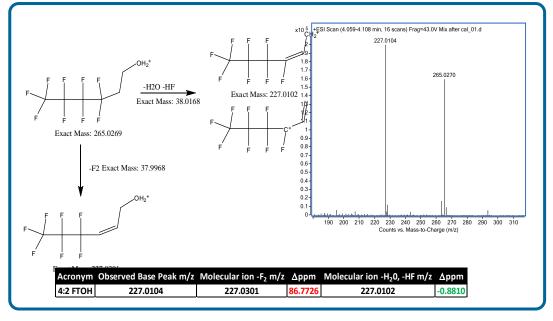
Jncorrected Mass Accuracy at 50 pg on column					
Acronym	Formula	Exact Mass + H 🗾	Observed Mass 🗾	∆ppm	
4:2 FTOH	$C_6H_5F_9O$	265.0269	265.0270	-0.3773	
6:2 FTOH	$C_8H_5F_{13}O$	365.0206	365.0206	0.0000	
8:2 FTOH	$C_{10}H_5F_{17}O$	465.0142	465.0140	0.4301	
10:2 FTOH	$C_{12}H_{5}F_{21}O$	565.0078	565.0078	0.0000	
7:2 sFTOH	$C_9H_5F_{15}O$	415.0174	415.0190	-3.8553	
5:1 FTOH	$C_6H_3F_{11}O$	301.0081	301.0079	0.6644	
6:1 FTOH	C7 H3 F13 O	351.0049	351.0050	-0.2849	
7:1 FTOH	C8 H3 F15 O	401.0017	401.0016	0.2494	
8:1 FTOH	C9 H3 F17 O	450.9985	450.9985	0.0000	
9:1 FTOH	C10 H3 F19 O	500.9953	500.9956	-0.5988	
10:1 FTOH	C11 H3 F21 O	550.9921	550.9922	-0.1815	
11:1 FTOH	C12 H3 F23 O	600.9889	600.9896	-1.1647	
MeFOSE	C11 H8 F17 N O3 S	558.0026	558.0042	-2.8674	
EtFOSE	$C_{12}H_{10}F_{17}NO_3S$	572.0183	572.0167	2.7971	


Resolution (50 pg on column)


Replicate injections showing Retention Time Precision


Pulsed, cold splitless injection was used to assure sample integrity and mitigate potential thermal degradation in the hot inlet. This further allowed increasing the injection volume from one to two microliters. To address significant peak shifting due to the heavy matrix, post-column backflush was configured using a purged union at the outlet of the analytical column and a 0.7 m restrictor into the mass spectrometer. Implementation of backflush components facilitated retention time reproducibility < 2% RSD.





Results and Discussion

Structure Elucidation Nominal loss = 38 m/z

Loss Elucidation & Mass Accuracy

Acronym	Formula	Loss 💌	Exact Mass-Loss	Observed Mass 2 🔽	∆ppm 2
4:2 FTOH	C ₆ H₅F ₉ O	-H2O, -HF	227.0102	227.0105	-1.3215
6:2 FTOH	C ₈ H ₅ F ₁₃ O	-H2O, -HF	327.0038	327.0040	-0.6116
8:2 FTOH	C ₁₀ H ₅ F ₁₇ O	-H2O, -HF	426.9972	426.9975	-0.7026
10:2 FTOH	C ₁₂ H ₅ F ₂₁ O	-H2O, -HF	526.9910	526.9915	-0.9488
7:2 sFTOH	$C_9H_5F_{15}O$	-H2O, -HF	377.0006	377.0011	-1.3263
5:1 FTOH	$C_6H_3F_{11}O$	-HF	281.0017	281.0019	-0.7117
6:1 FTOH	C7 H3 F13 O	-HF	330.9988	330.9990	-0.6042
7:1 FTOH	C8 H3 F15 O	-HF	380.9954	380.9956	-0.5249
8:1 FTOH	C9 H3 F17 O	-HF	430.9923	430.9927	-0.9281
9:1 FTOH	C10 H3 F19 O	-HF	480.9894	480.9896	-0.4158
10:1 FTOH	C11 H3 F21 O	-HF	530.9860	530.9864	-0.7533
11:1 FTOH	C12 H3 F23 O	-HF	580.9834	580.9835	-0.1721
MeFOSE	C11 H8 F17 N O3 S	-H ₂ O	539.9920	539.9943	-4.2593
EtFOSE	C ₁₂ H ₁₀ F ₁₇ NO ₃ S	-H ₂ O	554.0077	554.0100	-4.1516

	Μ	S/MS	•	
x10.4 +E9I EIC(626.9018) MS(all) P 6.5 6.6 5.4 5.4 5.4 5.5 7 2.5 2.5 2.5 1.5	rag=43.0V Mix after cal_MSM8565_01.d			d = TIC en = EIC
0.5 0 8.1 8.15 8.2 8.25 x10 ⁴ +ESI Product Ion (8.463-8.490	8.3 8.35 8.4 8.45 8.5 8.55 CC 0 min, 6 scans) Frag=43.0V CID@10.0 (565	ounts vs. Acquisition Time (mi	n)	1 9.15 9.2 9.25 9.3
Acroi	nym Precursor m	/z CE Tran	sition m/z ∆ppr	m Loss 15 -H2O, -HF
0.5- 0.4- 0.2- 0.1- 0.2- 0.2- 0.2- 0.2- 0.2- 0.2- 0.2- 0.2		ounts vs. Mass-to-Charge (m/	z)	560 562 564 566
Compounds	Quantifying MRM	CE (V)	Qualifying MRM	
10.1 FTOH	551 > 40	40		CE (V)
10:1 FTOH	551 -> 49 565 > 527	40	527 -> 481	27
10:2 FTOH	565 -> 527	10	527 -> 481 551 -> 531	27 3
	565 -> 527 601 -> 581	10 3	527 -> 481	27
10:2 FTOH 11:1 FTOH	565 -> 527	10	527 -> 481 551 -> 531 601 -> 49	27 3 40
10:2 FTOH 11:1 FTOH 4:2 FTOH	565 -> 527 601 -> 581 265 -> 227	10 3 5	527 -> 481 551 -> 531 601 -> 49 227 -> 181	27 3 40 15
10:2 FTOH 11:1 FTOH 4:2 FTOH 5:1 FTOH	565 -> 527 601 -> 581 265 -> 227 301 -> 281	10 3 5 3	527 -> 481 551 -> 531 601 -> 49 227 -> 181 301 -> 49	27 3 40 15 40
10:2 FTOH 11:1 FTOH 4:2 FTOH 5:1 FTOH 6:1 FTOH	565 -> 527 $601 -> 581$ $265 -> 227$ $301 -> 281$ $351 -> 331$	$ \begin{array}{r} 10\\ 3\\ 5\\ 3\\ 3\\ 3 \end{array} $	$\begin{array}{r} 527 -> 481 \\ 551 -> 531 \\ 601 -> 49 \\ 227 -> 181 \\ 301 -> 49 \\ 351 -> 49 \\ \end{array}$	$ \begin{array}{r} 27 \\ 3 \\ 40 \\ 15 \\ 40 \\ 40 \\ 40 \end{array} $
10:2 FTOH 11:1 FTOH 4:2 FTOH 5:1 FTOH 6:1 FTOH 6:2 FTOH	$\begin{array}{r} 565 -> 527 \\ \hline 601 -> 581 \\ \hline 265 -> 227 \\ \hline 301 -> 281 \\ \hline 351 -> 331 \\ \hline 365 -> 327 \end{array}$	10 3 5 3 3 5	$\begin{array}{r} 527 -> 481 \\ 551 -> 531 \\ 601 -> 49 \\ 227 -> 181 \\ 301 -> 49 \\ 351 -> 49 \\ 327 -> 281 \end{array}$	$ \begin{array}{r} 27 \\ 3 \\ 40 \\ 15 \\ 40 \\ 40 \\ 17 \\ \end{array} $
10:2 FTOH 11:1 FTOH 4:2 FTOH 5:1 FTOH 6:1 FTOH 6:2 FTOH 7:1 FTOH	$\begin{array}{r} 565 -> 527\\ 601 -> 581\\ 265 -> 227\\ 301 -> 281\\ 351 -> 331\\ 365 -> 327\\ 401 -> 381\\ \end{array}$	$ \begin{array}{r} 10 \\ 3 \\ 5 \\ 3 \\ 3 \\ 5 \\ 3 \\ 5 \\ 3 \\ 5 \\ 3 \end{array} $	$\begin{array}{r} 527 -> 481 \\ \hline 551 -> 531 \\ \hline 601 -> 49 \\ \hline 227 -> 181 \\ \hline 301 -> 49 \\ \hline 351 -> 49 \\ \hline 327 -> 281 \\ \hline 401 -> 49 \\ \end{array}$	$ \begin{array}{r} 27 \\ 3 \\ 40 \\ 15 \\ 40 \\ 40 \\ 17 \\ 40 \\ \end{array} $
10:2 FTOH 11:1 FTOH 4:2 FTOH 5:1 FTOH 6:1 FTOH 6:2 FTOH 7:1 FTOH 7:2 FTOH	$\begin{array}{r} 565 -> 527\\ \hline 601 -> 581\\ \hline 265 -> 227\\ \hline 301 -> 281\\ \hline 351 -> 331\\ \hline 365 -> 327\\ \hline 401 -> 381\\ \hline 377 -> 77\\ \end{array}$	$ \begin{array}{r} 10 \\ 3 \\ 5 \\ 3 \\ 5 \\ 3 \\ 5 \\ 3 \\ 10 \\ 1$	$\begin{array}{r} 527 -> 481 \\ \hline 551 -> 531 \\ \hline 601 -> 49 \\ \hline 227 -> 181 \\ \hline 301 -> 49 \\ \hline 351 -> 49 \\ \hline 327 -> 281 \\ \hline 401 -> 49 \\ \hline 377 -> 69 \\ \end{array}$	$ \begin{array}{r} 27 \\ 3 \\ 40 \\ 15 \\ 40 \\ 40 \\ 17 \\ 40 \\ 25 \\ \end{array} $
10:2 FTOH 11:1 FTOH 4:2 FTOH 5:1 FTOH 6:1 FTOH 6:2 FTOH 7:1 FTOH 7:2 FTOH 8:1 FTOH	$\begin{array}{r} 565 -> 527\\ \hline 601 -> 581\\ \hline 265 -> 227\\ \hline 301 -> 281\\ \hline 351 -> 331\\ \hline 365 -> 327\\ \hline 401 -> 381\\ \hline 377 -> 77\\ \hline 451 -> 49\\ \end{array}$	$ \begin{array}{r} 10 \\ 3 \\ 5 \\ 3 \\ 5 \\ 3 \\ 5 \\ 3 \\ 10 \\ 40 \\ 40 \\ 40 \\ \hline $	$\begin{array}{r} 527 -> 481 \\ \hline 551 -> 531 \\ \hline 601 -> 49 \\ \hline 227 -> 181 \\ \hline 301 -> 49 \\ \hline 351 -> 49 \\ \hline 327 -> 281 \\ \hline 401 -> 49 \\ \hline 377 -> 69 \\ \hline 427 -> 381 \\ \end{array}$	$ \begin{array}{r} 27\\ 3\\ 40\\ 15\\ 40\\ 40\\ 17\\ 40\\ 25\\ 23\\ \end{array} $
10:2 FTOH 11:1 FTOH 4:2 FTOH 5:1 FTOH 6:1 FTOH 6:2 FTOH 7:1 FTOH 7:2 FTOH 8:1 FTOH 8:2 FTOH	$\begin{array}{r} 565 -> 527 \\ 601 -> 581 \\ 265 -> 227 \\ 301 -> 281 \\ 351 -> 331 \\ 365 -> 327 \\ 401 -> 381 \\ 377 -> 77 \\ 451 -> 49 \\ 465 -> 427 \end{array}$	$ \begin{array}{r} 10 \\ 3 \\ 5 \\ 3 \\ 5 \\ 3 \\ 5 \\ 3 \\ 10 \\ 40 \\ 5 \\ 5 \end{array} $	$\begin{array}{r} 527 -> 481 \\ \hline 551 -> 531 \\ \hline 601 -> 49 \\ \hline 227 -> 181 \\ \hline 301 -> 49 \\ \hline 351 -> 49 \\ \hline 327 -> 281 \\ \hline 401 -> 49 \\ \hline 377 -> 69 \\ \hline 427 -> 381 \\ \hline 451 -> 431 \\ \end{array}$	$ \begin{array}{r} 27\\ 3\\ 40\\ 15\\ 40\\ 40\\ 17\\ 40\\ 25\\ 23\\ 3\\ \end{array} $

Conclusions

This preliminary study illustrates GC/Q-TOF MS as viable for the analysis of PFCs in bio-solid matrix from waste water treatment plants. The uncorrected mass accuracy was typically less than 2 ppm (range 0 ppm - 5 ppm) with many of the fragments eliciting < 1 ppm accuracy. The high mass resolving power facilitated ion differentiation from the heavy bio-solid matrix. Many ions had mass resolution of 15000 or greater (range 5000 - 20000, mass dependent). The excellent mass accuracy and high resolution facilitated structure elucidation and fragment loss determinations. MS/MS mode confirmed compounds and offered insight into SRM methodology via GC tandem mass spectrometry. When compared to GC/MS/MS data, detection limits ranged from 100 fg – 600 fg on column.

Acknowledgements

The authors would like to gratefully acknowledge the United States Environmental Protection Agency for providing standards and prepared samples for the study presented herein.

The United States Environmental Protection Agency through its Office of Research and Development contributed to the research described here.

Mention of trade names or commercial products does not constitute endorsement or recommendation for use by USEPA.

Bibliography

Macherone A, Nakayama SF, Tadele K, Mills MA. A highly sensitive and specific GC-PCI-MS/MS method for the analysis of fluorinated alkyl compounds. 59th ASMS Conference on Mass Spectrometry and Allied Topics. Denver, CO. June 5 - 9, 2011

Nakayama SF, Macherone A, Kidus Tadele K and Mills MA. Application of GC-MS/MS for volatile fluoroalkyl compound analysis. Dioxin 2010. September 12-17, 2010 Marriot Rivercenter San Antonio, TX

Larsen BS, Stchur P, Szostek B, Bachmura SF, Rowand RC, Prickett KB, Korzeniowski SH, and Buck RC. Journal of chromatography. A 1110(1-2):117,2006 Mar 31

