

# Fraction Analysis 1.0

# STARTING GUIDE



Document Number P/N 462 R1



#### ©2023 MESTRELAB RESEARCH S.L.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit, or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.



# Table of Contents

| 1. | INST  | ALLATION                        | 3 |
|----|-------|---------------------------------|---|
| 2. | THE   | WORKFLOW                        | 4 |
|    | 2.1.  | INPUT                           | 5 |
|    | 2.2.  | PLUGINS                         | 6 |
|    | 2.2.1 | 1. The Input tab                | 7 |
|    | 2.2.2 | 2. The Analysis tab             | 9 |
|    | 2.2.3 | 3. The Quality Controls tab     | 2 |
|    | 2.3.  | OUTPUT                          | 3 |
| 3. | THE   | OUTPUT FOLDER                   | 4 |
|    | 3.1.  | THE HTML FILE                   | 4 |
|    | 3.2.  | THE CSV REPORT                  | 4 |
|    | 3.3.  | THE PDF AND MNOVA1              | 5 |
|    | 3.4.  | THE JSON FILES                  | 5 |
|    | 3.5.  | OTHER OUTPUT                    | 6 |
| 4. | MNC   | DVA GEARS RESULTS VIEWER        | 6 |
|    | 4.1.  | THE GENERAL TAB                 | 8 |
|    | 4.2.  | THE FRACTION TAB                | 8 |
|    | 4.3.  | THE STATUS TAB                  | 9 |
|    | 4.4.  | THE CONTROLS TAB                | 9 |
|    | 4.5.  | RESULTS REVIEWING               | 0 |
| 5. | FRAC  | TION SCORING AND DECISION LOGIC | 0 |





Fraction Analysis is a plugin for Mgears designed to analyze preparative LCMS data to decide as to whether fractions are worth keeping or should be disposed of. It achieves this by considering the mass spectra of the collected fractions as well as the characteristics of the UV peaks associated with them. Using user-defined criteria, it sorts fractions into one of three categories: QC (send to quality control), dispose (unlikely to contain sufficient, or sufficiently pure, product), or review (data is ambiguous and should be reviewed by an analyst). An expert can quickly review the analysis for a batch in the Mgears Viewer and reassign categories in a straightforward manner.

This document is designed to help you get started with Fraction Analysis to streamline decision making and enhance the efficiency of your purification workflows.

## 1. Installation

Before installing Fraction Analysis, make sure you already have Mnova MSChrom (minimum version: 15.0) and Mgears (minimum version: 2.5) installed and running with valid licenses.

Go to Files>Advanced Plug-ins>Available. Tick the Fraction Analysis plugin, then press Install.

| Advanced Plug-ins              |                      | ?      | $\times$     |
|--------------------------------|----------------------|--------|--------------|
| F                              | ilter:               |        |              |
| Available Updates Ins          | talled               |        |              |
| Name 🗠                         | Default Version      |        | $\checkmark$ |
| Mnova Fraction Analysis        | 1.0.0.12365          |        |              |
|                                | C                    | Instal | I            |
|                                |                      |        |              |
|                                |                      |        |              |
|                                |                      |        |              |
| Directory                      |                      |        |              |
| hg/Mestrelab Research S.L./Mes | stReNova BETA/plugin | s      | 5            |
|                                |                      | Clo    | ose          |

Another option is to drag and drop the Fraction Analysis installer into the Mnova interface. Mnova will report whether all dependencies are resolved, notify you of the version you are about to install, and give you the option to proceed or cancel the installation. If you proceed with the install, you will need to restart Mnova to use the software.



Restart Mnova.



Fraction Analysis must now be installed. You can check your license status by going to **Files>Help>License Manager.** A green check must appear in the plugin's status column.

| C License M | anager            |          |
|-------------|-------------------|----------|
| Host ID     |                   |          |
| State       | Plug-in           | ls       |
| 22 📀        | Fraction Analysis | Mestrela |
|             |                   |          |

# 2. The workflow

Launch Mgears from the Mnova Automation ribbon. The dialog with the usual six tabs will open.

| MestReNova                      |                      | $ \prec \prec$  |           |          |          |          |
|---------------------------------|----------------------|-----------------|-----------|----------|----------|----------|
| Elucidation Chemomet            | trics Binding        | Automation      | <u> </u>  |          |          |          |
| ୍ଦ୍ର 🗗 🧿                        |                      |                 |           |          |          |          |
| Mgears Mgears MyGears<br>Viewer | MyGears<br>Workflows |                 |           |          |          |          |
|                                 | ⁰⊗ Mnova Gear        | s<br>Processing | 🕎 Plugins | 🔀 Design | 📑 Output | Settings |

P



#### 2.1. Input

Fraction Analysis runs from within Mnova Gears and therefore follows the general setup workflow, starting with the input data. LCMS data can come from your local **Disk**, **Database**, or from **Real-Time** acquisition. In this guide, we will work with data from disk directories (*please refer to the <u>Mnova Gears manual</u> for more detail about other input types*).

Click on the \_\_\_\_ button and select the data files to upload as your **Main Directory**.



The detection of experimental files can be achieved manually by selecting the experiment type(s) and providing **Path Masks** to the relevant data, or automatically via Mgears. When using the **Automatic Detection** mode, **Experiment selection** is recommended if your data folder contains different types of data files to restrict detection to GC/LC/MS and avoid analysis of other undesired files. In this case, you must select the **GC/LC/MS** experiment type, as shown below.

| <b>°⊚</b> Mi   | nova Gears                                                                                                                                              | ? | $\times$ |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|
| <b>•</b>       | Input 😵 Processing 🚱 Plugins 🔀 Design 📑 Output 🔅 Settings                                                                                               |   |          |
| <b>çă</b> Disk | Using Automatic Detection       Experiments Selection         Main Directory:       C:/Users/Usuario/Desktop/Datasets/By Plug_, Fraction analysis/Input |   | <b>R</b> |
| B<br>S         | Optional Directory:           NMR           1H         13C           15N         19F           31P         HSOC                                         |   |          |
| Real Time      | COSY NOESY HMBC ROESY TOCSY H2BC C Custom Format                                                                                                        |   |          |



You can now perform an automatic inspection of the selected directory by clicking on  $\overline{\mathbf{a}}$  to check whether your input files are found and filtered correctly.

| <b>°⊚</b> Mr         | nova Gears                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ? | × |
|----------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| € I                  | input 😵                                                            | ို Processing 🔗 Plugins 🔀 Design 📑 Output 🔅 Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |
| 🛜 Real Time 🗳 DB တြန | Using A<br>Main Direct<br>Optional Di<br>NMR<br>1H<br>COSY<br>COSY | Automatic Detection Experiments Selection tory: C:/Users/Usuario/Desktop/Datasets/By Plugin/Fraction analysis/Input Directory: C:/Users/Usuario/Desktop/Datasets/By Plugin/Fraction analysis/Input/A258.raw/_FUNC001.DAT Experiment: A258 MS: C:/Users/Usuario/Desktop/Datasets/By Plugin/Fraction analysis/Input/B065.raw/_FUNC001.DAT Experiment: 685 MS: C:/Users/Usuario/Desktop/Datasets/By Plugin/Fraction analysis/Input/D541.raw/_FUNC001.DAT Experiment: X258 MS: C:/Users/Usuario/Desktop/Datasets/By Plugin/Fraction analysis/Input/D541.raw/_FUNC001.DAT Experiment: %25 MS: C:/Users/Usuario/Desktop/Datasets/By Plugin/Fraction analysis/Input/S52.raw/_FUNC001.DAT Experiment: %25 MS: C:/Users/Usuario/Desktop/Datasets/By Plugin/Fraction analysis/Input/S52.raw/_FUNC001.DAT Experiment: %26 MS: C:/Users/Usuario/Desktop/Datasets/By Plugin/Fraction analysis/Input/S52.raw/_FUNC001.DAT Experiment: %27 MS: C:/Users/Usuario/Desktop/Datasets/By Plugin/Fraction analysis/Input/S52.raw/_FUNC001.DAT Experiment: %27 MS: C:/Users/Usuario/Desktop/Datasets/By Plugin/Fraction analysis/Input/S52.raw/_FUNC001.DAT Experiment: %28 MS: C:/Users/Usuario/Desktop/Datasets/By Plugin/Fraction analysi |   |   |
|                      |                                                                    | ок 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |

#### 2.2. Plugins

In the **Plugins** section, select and add the Fraction Analysis plugin. Then, click on **Fraction Analysis Plugin Settings** to configure your analysis and reporting method.



A dialog with three tabs should appear: the Input, Analysis, and Quality Controls tabs.



#### 2.2.1. The Input tab

In the **Input** tab, you must choose how the target will be searched for. Target identification can be achieved in various ways:

(1) **Structure in document:** If you choose this option, Fraction Analysis will use the molecular structure provided within the data document as the target compound.

2 **Dataset Filename:** When you select this option, the target's molecular formula, molecular weight, or m/z ratio will be extracted from a text file stored within your datasets. You will need to provide the file name to search for in the dataset.



(3) **Parameter Name:** With this choice, the target's molecular formula, molecular weight, or m/z ratio will be retrieved from the dataset parameters. You must specify the Mnova parameter name to be used for this purpose. It is important to note that this should be the parameter name as recognized within Mnova, not its "native" name in the original data. Please refer to the <u>note</u> below for instructions on configuring this in Mnova.

| Parameter Name |              |                |      | е       | M                | olecular | Formula |  |
|----------------|--------------|----------------|------|---------|------------------|----------|---------|--|
| Pa             | Parameters   |                |      |         |                  |          |         |  |
| Re             | )<br>port    | Copy           | Setu | l<br>ID | Sector Customize |          |         |  |
|                | F            | Parame         | ter  |         |                  |          | Value   |  |
| 12             | Mole<br>form | ecular<br>nula |      |         |                  |          |         |  |
| •              |              |                |      |         |                  |          |         |  |

(4) **Mapping File Column:** If you opt for this method, the target's molecular formula, molecular weight, or m/z ratio will be retrieved from a CSV file. Be sure to include the CSV file on the <u>Input</u> tab (Mapping file). Here, you will need to indicate which column contains the mass or formula information.



| Y      | Filtering String:                                                        |   |        | D     |  |
|--------|--------------------------------------------------------------------------|---|--------|-------|--|
| and a  |                                                                          |   | A      | В     |  |
| Filter | Mapping File: C:/Users/Usuario/Desktop/Datasets/Mapping/Mapping file.csv | 1 | Method | mw    |  |
|        |                                                                          | 2 | d1     | 500.3 |  |
|        |                                                                          | 3 | d2     | 500.3 |  |
|        |                                                                          | 4 | d3     | 500.3 |  |
|        |                                                                          | 5 | d4     | 500.3 |  |
|        |                                                                          | 6 | m1     | 462.1 |  |
|        |                                                                          | 7 | m2     | 462.1 |  |
|        |                                                                          | 8 | m3     | 462.1 |  |
|        |                                                                          | 0 |        | 402.1 |  |



#### **Prerequisites for target information extraction from parameters**

This is a convenient way to supply the workflow with target information, assuming you have it in your prep files. It may well be present as a parameter called 'target mass', or something similar. To make this information available to the brick, you need to set up an Mnova parameter to parse it from the input data.



Open your dataset in Mnova. Go to the **View** tab and check the **Parameters** option. In the **Parameters** window, click on **Customize**. Enter your parameter name and template as shown in the example below.

Please be aware that the specific parameter you need will depend on your setup. You may need to examine your particular dataset to determine the required parameter.

It is also important to note that parameter customization is specific to your data provider. For instance, if you have a combination of Waters and Agilent instruments, you will need to configure parameters for both accordingly.





2.2.2. The Analysis tab

#### 2.2.2.1. The LC/MS Evaluation tab

In the **Chromatogram** section you can define which signal will be used for quantification and peak detection.

Press the Add 🛨 or Edit 🖉 button to configure the chromatogram extraction preferences.

A dialog will open. Select the appropriate analytical trace type (DAD, DAD range, PDA, or other trace) for chromatogram extraction. Then, you should choose whether to align the chromatograms automatically or manually; we recommend the use of manual alignment. In such a case, the value introduced will be added to the chromatogram in order to align it with the TIC. (*Please refer to this article to see how you can calculate the time-shift required to align chromatograms manually with Mnova.*)

Press **OK** to save your choices.

| 🗞 Fraction Analysis Settings                                                                                                                                                                                                                                                                                | ?        | $\times$                       | Chromatogram Parameters ?                                                                                                                                                                                                                                                  | $\times$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Input       Analysis       Quality Controls         LC/MS Evaluation       Fraction Scoring         Chromatogram       Extraction: PDA         Alignment:       Manual, Offset = 0.000 min         Baseline       Correction:         Peak       Detection         Molecule       Match         OK       OK | o<br>Car | Ø       /×       /×       ncel | Extraction<br>DAD 600.00 nm Tolerance 1.00 nm C<br>DAD range 600.00 nm 6<br>PDA<br>Other Trace<br>Alignment<br>Manual 0.000 min C<br>Auto<br>Auto<br>Auto<br>Parameters<br>Filter 1 C Autodetect<br>Smooth Factor: 1 C Autodetect 10<br>Date Autodetect 10<br>Construction | et       |



|                  |                          | 6                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|------------------|--------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Input Analysis   | Quality Controls         |                   | Settings Ok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| LC/MS Evaluation | Fraction Scoring         |                   | Enhanced  Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| - Chromatogram — |                          |                   | Minimum Area Threshold: 0.50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Extraction: PDA  |                          |                   | Maximum Peak Width at Base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|                  |                          |                   | Units: Time (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Alignment: Man   | ual, Offset = 0.000 min  |                   | Threshold 1.00 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| Baseline Correc  | tion: Filter = auto; Smo | oth Factor = auto |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|                  |                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        |
| -Peak Detection  |                          |                   | Molecule Match Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        |
|                  |                          | <u>J</u> æ        | 📄 · 📳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| Molecule Match   |                          |                   | - Toloranco - Throsholds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|                  |                          |                   | Thesholds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0        |
|                  |                          | ×                 | Units: Da v<br>Score Threshold: 0.85 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C<br>Car |
|                  |                          | ×                 | Interiods         Interiods           Units:         Da         Score Threshold:         0.85 \$\$           For MS:         0.30 \$\$         Matches per Molecule:         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C<br>Car |
|                  |                          | ×                 | Interiods     Da     Interiods       Units:     Da     Interiods       For MS:     0.30     Interiods       For MS/MS:     1.00     Interiods       Positive Polarization     Negative Polarization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ca       |
|                  |                          | OK Cancel         | Interiods     Da     Thresholds       Units:     Da     *       For MS:     0.30     1       For MS/MS:     1.00     1       Positive Polarization     Adducts/Losses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ca       |
|                  |                          | OK Cancel         | Idea ance       Da       Timesholds         Units:       Da       Image: Constraint of the second | Car      |
|                  |                          | OK Cancel         | Indefance     Intestiduds       Units:     Da       For MS:     0.30       For MS/MS:     1.00       Positive Polarization       Adducts/Losses:       Adduct Loss       1       H+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ca       |
|                  |                          | OK Cancel         | Interinde     Interindes       Units:     Da       For MS:     0.30       For MS/MS:     1.00       Positive Polarization       Adducts/Losses:       Adduct Loss       1       1       H+       2       Na+       2       Vir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ca       |
|                  |                          | OK Cancel         | International     International       Units:     Da       For MS:     0.30       For MS/MS:     1.00       Positive Polarization       Adduct Loss       I       H+       2       Adduct Loss       1       I       H+       2       Adduct Loss       1       I       H+       2       Adduct Loss       I       H+       2       I       H+       I       I       H+       I       I       H+       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ca       |
|                  |                          | OK Cancel         | Intestate     Intestate       Units:     Da       For MS:     0.30       For MS/MS:     1.00       Positive Polarization       Adducts/Losses:       Adducts/Losses:       Adduct Loss       1 H+       2 Na+       3 K+       4 CH3OHH+       We Politie Chart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ca       |
|                  |                          | OK Cancel         | Ode ance       Intestodds         Units:       Da       Intestodds         For MS:       0.30       Intestodds         For MS/MS:       1.00       Intestodds         Positive Polarization       Negative Polarization         Adducts/Losses:       Adduct Loss       Intestodds         I H+       Intestodds       Intestodds       Intestodds         Adduct Loss       Intestodds       Intestodds       Intestodds         Adducts/Losses:       Intestodds       Intestodds       Intestodds         Adduct Loss       Intestodds       Intestodds       Intestodds         Adducts/Losses:       Intestodds       Intestodds       Intestodds         Adduct Loss       Intestodds       Intestodds       Intestodds         Adduct Loss       Intestodds       Intestodds       Intestodds         I H+       Intestodds       Intestodds       Intestodds       Intestodds         I H+       I H+       I H+ <thi h+<="" th=""> <thi h+<="" th="">       I H+       I H+&lt;</thi></thi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (<br>Cz  |
|                  |                          | OK Cancel         | Idea ance       Da       Imendods         Units:       Da       Imendods         For MS:       0.30       Imendods         For MS/MS:       1.00       Imendods         Positive Polarization       Adducts/Losses:       Negative Polarization         Adducts/Losses:       Adduct Loss       Imendods         1       H+       Imendods         2       Na+       Imendods         3       K+       Imendods         4       CH3OHH+       Imendods         Matches per values       Imendods         More Settings       MS/MS Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C        |

The **Molecule Match** settings are specifically utilized for the identification of adducts, which will play a crucial role in evaluating **Peak MS Purity** as detailed in section <u>2.2.2.2</u>. This means that the better such adducts are defined, the better the purity evaluation.

Other **Molecule Match** settings, such as **Thresholds** or **Tolerance**, currently have no impact on the results.



#### 2.2.2.2. The Fraction Scoring tab

Fraction scoring is based on two measurable parameters: the <u>purity</u> and <u>quantity</u> of the analyte in the collected fraction. In this tab, you will need to set the lower and higher thresholds for the evaluation of these two parameters.

#### Peak MS purity

- The purity of the analyte is determined by analyzing the masses that are eluted in the fraction. This is achieved by generating an MS spectrum, then matching and assigning the target peaks.
- Adducts that are defined in the Molecule Match table are also considered part of the target.
- Peaks that are larger than the target peak and are not adducts are categorized as impurities.
- Peaks that are smaller than the target peak could also be fragments that need to be considered when calculating purity. To assess this, the tool analyzes the retention time (RT) of the extracted ion chromatogram (EIC) for each of these masses in comparison to the target RT. You can configure the **Peak Match Tolerance** for this evaluation:
  - If the peaks' RTs align with that of the target (within the specified tolerance), they are considered fragments of the target rather than impurities.
  - If the peaks' RTs do not match the target, they are treated as impurities, similar to larger masses.



• Purity is then calculated using the formula:

 $Purity = \frac{target}{target + \sum impurities}$ 

To evaluate and assign a score for **Peak MS Purity**, it is necessary to set "low" and "high" scoring thresholds as a percentage of the maximum peak MS purity. By setting these thresholds at 20% and 80% as in the image below, a sample would be considered to pass the test if it has a peak purity of  $\ge$  80%; conversely, it would fail if its purity is  $\le$  20%. Fraction Scoring and decision logic are described in more detail in <u>section 5</u>.

| Settings                          | ? | $\times$ |
|-----------------------------------|---|----------|
|                                   |   | 0        |
| Input Analysis Quality Controls   |   |          |
| LC/MS Evaluation Fraction Scoring |   |          |
| Peak MS Purity                    |   |          |
| Thresholds Low: 20% Thigh: 80%    |   | ÷        |
| Peak Match Tolerance: 0.010 min 🗘 |   |          |
| UV Peak Intensity                 |   |          |



#### UV Peak Intensity

The quantity of the analyte is determined by the **UV Peak Intensity** for each fraction. The **UV Peak Intensity** "low" and "high" thresholds can be configured as a percentage of the maximal peak height or as an absolute value of the peak height. Fraction Scoring and decision logic are described in more detail in <u>section 5</u>.

| Input Analysis        | Quality Controls               |
|-----------------------|--------------------------------|
| LC/MS Evaluation      | Fraction Scoring               |
| Peak MS Purity        |                                |
| Thresholds Low:       | 20% CHigh: 80%                 |
| Peak Match Tolerance  | : 0.010 min 🌲                  |
| UV Peak Intensity     |                                |
| Thresholds Low:       | 1000000 🗘 High: 5000000 🇘      |
| Peak Intensity Measur | re: 🔘 % Max Intensity 💿 Height |

#### 2.2.3. The Quality Controls tab

In the **Quality Controls** tab, you can enable and configure the **Fractions Excess** option to flag up when the number of collected fractions exceeds the desired threshold. This allows you to quickly detect cases where a large number of fractions have been collected.

| <b>Praction Analysis Settings</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | ?                     | $\times$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|----------|
| <b>=</b> E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |                       | 0        |
| Input Analysis Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Controls                                                                                                         |                       |          |
| Fractions Excess: 1 Fla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g: Fractions Excess 3                                                                                            |                       |          |
| Color<br>Basic color<br>Basic colors<br>Basic colors |                                                                                                                  | ×<br>•5               |          |
| Custom colors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hue: 330 <sup>+</sup> , Red:<br>Sat: 255 <sup>+</sup> , Green:<br>Val: 255 <sup>+</sup> , Blue:<br>HTML: #ff007f | 255 ¢<br>0 ¢<br>127 ¢ |          |

Finalize your plugin settings setup by pressing **OK** and move to the next step.



**Top tip!** The analysis settings you have just configured can be saved and reused in future analyses. Press the **Save** button  $\square$  on the top left side of the settings dialog box, then choose a location and press **Save**.

| °© Fracti | on Analysis    | Settings  |
|-----------|----------------|-----------|
| <b>i</b>  |                |           |
| Input     | Analysis       | Quality ( |
| Target –  | Structure in D | ocument , |

The next time you need to run Fraction Analysis, you only need to press the folder button and to pleft side of the settings dialog box, choose your settings file (\*.data file) then press **Open**. Your saved settings will be loaded into the settings dialog. All you need to do now is to click OK and move to the next steps.

Now, if you are happy with the configuration you can click on **OK**, finalize your plugin settings setup, and move to the next step.

#### 2.3. Output

In the **Output** tab, you will need to choose a directory in which to save your analysis results. Click on — and select a results folder on your disk.

| 🍖 Mnova G  | ears                 |                   |               |        |
|------------|----------------------|-------------------|---------------|--------|
| 🛃 Input    | 💖 Processing         | Plugins           | 🐹 Design      | Output |
| Disk       |                      |                   |               |        |
| Directory: | C:/Users/Usuario/Des | ktop/Results/Frac | tion Analysis | 🗆 A    |
|            |                      |                   |               | S      |

Optionally, enable the Add Nickname to the Results Folder and type the nickname of your choice (1), Add Incremental Numbering to your results folder (2), and/or decide whether to use Only the Nickname in the folder's name (3).

| 🍖 Mnova Ge | ears                 |                   |               |          |                                    |                        | ?                                      | ×  |
|------------|----------------------|-------------------|---------------|----------|------------------------------------|------------------------|----------------------------------------|----|
| 🛃 Input    | 💖 Processing         | Plugins           | 🔀 Design      | 📑 Output | Settings                           |                        |                                        |    |
| Disk       |                      |                   |               |          |                                    | 0                      |                                        | 8  |
| Directory: | C:/Users/Usuario/Des | ktop/Results/Frac | tion Analysis |          | Add Nickname to the Results Folder | Exp29                  | Add Incremental Numbering Only Nicknam | ie |
|            |                      |                   |               |          | Sort in Subfolders                 | Split Results in Subfo | Iders                                  |    |

You can also choose to create an Mnova document, a PDF, or to save your results to a database.

**Note.** We strongly advise enabling the option to generate **Mnova** document output, particularly if you intend to examine or review the spectra alongside the results in the <u>Mgears Result Viewer</u>. Without this option enabled, when you load the results in the Mgears Result Viewer only the data will be visible, without any spectra.

Once the configuration has been completed to your satisfaction, click on **Run P**<sup>Run</sup> to launch the analysis.



The results folder is saved under the previously specified directory, as described above.

#### 3.1. The HTML file

The HTML report includes an overview of the results. Each sample is displayed on a row with the analyzed **Target** information (m/z, molecular structure), the **Overall status**, fraction results **(Total fractions, Total QC fractions, Total good fractions)**, a screenshot of the spectra, and links to the corresponding **Mnova** result files.

| arameter   |                |        | Value      |                       |                                  |                                                           |                                               |                                               |          |    |                                                |
|------------|----------------|--------|------------|-----------------------|----------------------------------|-----------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------|----|------------------------------------------------|
| esults Dir | ectory         |        | C:/Users/U | suario/Desktop        | /Results/Fractic                 | on Analysis/2023                                          | -05-24T16.26.3                                | 4_Exp29-1                                     |          |    |                                                |
| tarted On  |                | :      | 2023-05-24 | T16:26:34             |                                  |                                                           |                                               |                                               |          |    |                                                |
| ompleted   | On             | :      | 2023-05-24 | T16:28:56             |                                  |                                                           |                                               |                                               |          |    |                                                |
| *<br># 9   | 0              |        | ó          | Fractions             | o Overall o                      | Total                                                     | Total QC                                      | Total<br>Good 🌼                               | Controls |    | Mnova                                          |
|            | ample          | Target |            | Overview              | Status                           | Fractions                                                 | Fractions                                     | Fractions                                     | Chart    | MS | File                                           |
| A2         | 58             | Target | _          | Overview              | Status                           | Fractions                                                 | Fractions<br>0                                | Fractions<br>0                                | Chart    | MS | File<br>A258.mnova                             |
| A2         | 58<br>55       | Target |            | 0/1<br>(1/2)          | Status<br>ok<br>review           | Fractions<br>1                                            | Fractions           0           0             | Fractions           0           1             | Chart    |    | File<br>A258.mnova<br>B065.mnova               |
| A2         | 58<br>55<br>10 | Target |            | 0/1<br>(1/2)<br>(2/2) | Status<br>ok<br>review<br>review | Fractions           1           2           2           2 | Fractions           0           0           1 | Fractions           0           1           2 | Chart    |    | File<br>A258.mnova<br>B065.mnova<br>C110.mnova |

#### 3.2. The CSV report

The CSV file saved under the "FractionAnalysis" subfolder contains the detailed results, such as the m/z ratio, number of chromatographic peaks, peak heights, MS purity, and the proposed Action for each analyzed fraction.

|    | Α      | В             | С                | D        | E        | F      | G       | Н     | 1      | J         | K     | L       | M            | N        | 0              | Р      | Q       |
|----|--------|---------------|------------------|----------|----------|--------|---------|-------|--------|-----------|-------|---------|--------------|----------|----------------|--------|---------|
| 1  | Sample | Target        | MonoisotopicMass | TargetRT | Fraction | Vial   | StartRT | EndRT | IonMZ  | IonAdduct | Peaks | Height  | HeightStatus | MSPurity | MSPurityStatus | Туре   | Action  |
| 2  | A258   | 1000          | 374.0606277      | 3.35     | 1        | 1,1:21 | 3.07    | 3.183 | 391.37 | ?         | 0     | 506733  | low          | 7        | low            | Tail   | dispose |
| 3  | B065   |               | 354.1579572      | -        | 1        | 1,1:19 | 3.282   | 3.484 | 219.15 | ?         | 1     | 4.6E+07 | high         | 0        | low            | Impure | review  |
| 4  | B065   | 1 March 1997  | 354.1579572      | -        | 2        | 1,1:20 | 3.484   | 3.532 | 332.36 | ?         | 0     | 225226  | low          | 0        | low            | Tail   | dispose |
| 5  | C110   | 10000000000   | 428.1769781      | 3.319    | 1        | 1,1:17 | 3.154   | 3.357 | 375.42 | ?         | 1     | 1.2E+07 | high         | 19       | low            | Impure | review  |
| 6  | C110   | 1000000000    | 428.1769781      | 3.319    | 2        | 1,1:18 | 3.357   | 3.404 | 248.2  | ?         | 0     | 9221773 | high         | 13       | low            | Tail   | review  |
| 7  | D541   | the second of | 351.1834437      | 3.314    | 1        | 1,1:14 | 3.137   | 3.34  | 248.2  | fragment  | 1     | 5E+07   | high         | 68       | medium         | Impure | qc      |
| 8  | D541   | 100.000       | 351.1834437      | 3.314    | 2        | 1,1:15 | 3.34    | 3.387 | 248.2  | fragment  | 2     | 6.1E+07 | high         | 53       | medium         | Impure | review  |
| 9  | X525   |               | 344.0864485      | 3.648    | 1        | 1,1:1  | 3.512   | 3.796 | 240.16 | ?         | 2     | 4.9E+07 | high         | 0        | low            | Impure | review  |
| 10 | Y562   | 1. P. 1997    | 335.0575912      | 1.898    | 1        | 1,1:22 | 3.333   | 3.536 | 296.19 | ?         | 1     | 1.5E+08 | high         | 0        | low            | Impure | review  |
| 11 | Y562   |               | 335.0575912      | 1.898    | 2        | 1,1:23 | 3.536   | 3.583 | 296.19 | ?         | 1     | 2.1E+07 | high         | 0        | low            | Impure | review  |
| 12 | Z190   |               | 394.0752289      | -        | 1        | 1,1:16 | 3.35    | 3.541 | 313.22 | ?         | 1     | 9.3E+07 | high         | 11       | low            | Impure | review  |



#### 3.3. The PDF and Mnova

The PDF and Mnova reports have similar layouts and show:

- The Total Ion Chromatogram (TIC) with the fractions highlighted in colors (red and purple in the example below).
- The UV trace (PDA) as defined in the <u>chromatogram extraction parameters</u>.
- The MS spectrum of the main fraction with the MS peak assigned to target.
- The MS spectrum of each fraction, with a background color indicating the proposed action (green indicates that the fraction can be submitted for quality control, yellow indicates that the fraction needs review, and no color means the fraction must be disposed of).



#### 3.4. The JSON files

For every analyzed fraction, a JSON file is automatically generated and stored in the "Fractions" subfolder within the "FractionAnalysis" folder. This file encompasses all the pertinent information obtained from the analysis, allowing customers to extract and utilize the data in any desired format for subsequent processes. The JSON file serves as a comprehensive resource, ensuring seamless integration and accessibility of relevant information for downstream operations.

| > | FractionAnalysis > Fraction | ns   |
|---|-----------------------------|------|
|   | Name                        | Date |
|   | <b>Z190</b>                 | 11/1 |
|   | Y562                        | 11/1 |
|   | <b>X525</b>                 | 11/1 |
|   | E055                        | 11/1 |
|   | D541                        | 11/1 |
|   | 🗋 C110                      | 11/1 |
|   | B065                        | 11/1 |
|   | A258                        | 11/1 |



#### 3.5. Other output

- A "documents" directory, containing the output Mnova files (unless Mgears is configured to save Mnova files to another location).
- A "pdf" directory, containing the output PDF files (unless Mgears is configured to save PDF files to another location).
- A log file of the execution.
- A copy of the settings used in the current evaluation.
- A resume file of the steps followed in the execution.
- A CSS folder, a data folder, a JS folder, and an images folder.

## 4. Mnova Gears Results Viewer

Fraction Analysis is compatible with the Mnova Gears Results Viewer. Open the **Mgears Viewer** from the Mnova **Automation** tab.



Click on 💻 and select your analysis result folder to open it.

| Mgears Viewer                                           | ₽×,                                                                        | www.mestrelab.com        |
|---------------------------------------------------------|----------------------------------------------------------------------------|--------------------------|
|                                                         | 🔅 👘 🔝 🗊 🖓 Analyze - Again                                                  |                          |
| Well Plate                                              |                                                                            |                          |
| Open Directory                                          |                                                                            | ×                        |
| $\leftrightarrow$ $\rightarrow$ $\checkmark$ $\uparrow$ | $\label{eq:Res} \  \   Fractio \  \   \lor \qquad \  \   \  \   \   \   \$ | Search Fraction Analysis |
| Organize • New folder                                   |                                                                            | ≣ - (?)                  |
| Re > • OneDrive - Perso                                 | Name                                                                       | Date modified            |
| II I                                                    | 2023-05-24T15.57.39_test-1                                                 | 5/24/2023 4:00 PM        |
| 🔼 Owncloud 🖈                                            | 2023-05-24T16.16.27_test-2                                                 | 5/24/2023 4:16 PM        |
| 🔚 Desktop 🖈                                             | 🗀 2023-05-24T16.26.34_Exp29-1 💈                                            | 5/24/2023 4:28 PM        |
| 🚽 Downloads 🖈                                           |                                                                            |                          |
| 📑 Documents 🖈                                           |                                                                            |                          |
| Pictures 🔶                                              |                                                                            |                          |
| Folder:                                                 | 2023-05-24T16.26.34_Exp29-1                                                |                          |
|                                                         |                                                                            | Select Folder Cancel     |



| Results file name  | Mg       | ears \   | /iewer - : | 2023-0   | 5-24T16  | .26.34  | 4_Exp29- | -1        |         |                             | ×          |
|--------------------|----------|----------|------------|----------|----------|---------|----------|-----------|---------|-----------------------------|------------|
|                    | /        | •        | i 🚡        |          | 3 🗖      | ¢       | Ť        |           |         | <b>C</b><br>Analyz<br>Again | e 🔻        |
| Datasata list      |          | #        | Title      | (        | Documen  | ıt      |          |           |         |                             |            |
| Datasets list      | 1        | ,        | 4258       | A258     | 3.mnova  | a       | C:/Users | s/Usuario | o/Deskt | top/Res                     | 5L         |
|                    | 2        | 1        | 3065       | B065     | .mnova   | 1       | C:/Users | s/Usuario | o/Deskt | top/Res                     | sı         |
|                    | 3        |          | 2110       | C110     | ).mnova  | 9       | C:/User  | s/Usuario | o/Deskt | top/Res                     | s <b>i</b> |
|                    | 4        | 1        | 0541       | D54      | 1.mnova  | 3       | C:/User  | s/Usuario | o/Deskt | top/Res                     |            |
|                    | •        |          |            |          |          |         |          |           |         | Þ                           |            |
|                    | We       | ll Plate |            |          |          | _       |          |           |         |                             | _          |
| Well plate display |          | 1        | 2          | 3        | 4        | 5       | 6        | 7         | 8       | 9                           |            |
|                    | A        | 0/1      | 1/2        | 2/2      | 2/2      | 0/0     | ) (1/1)  | 2/2       | 1/1     |                             |            |
|                    | •        |          |            |          |          |         |          |           |         |                             |            |
|                    | Re       | sults –  |            |          |          |         |          |           |         |                             | _          |
|                    |          | Fractio  | onAnalysis | s Result |          |         |          |           |         |                             | 1          |
|                    |          | Resu     | lt in Well | Plate:   | ractions | Over    | /iew     |           |         | ¥                           |            |
|                    |          | G        | eneral     | Fraction | ns St    | tatus   | Contr    | ols       |         | _                           |            |
| Results            |          |          | Pa         | aramete  | r        |         | Val      | ue        |         |                             |            |
| Results            |          | 1        | Sample     | 9        | /        | 4258    |          |           |         |                             |            |
|                    |          | 2        | Target     |          | _        |         |          |           | _       |                             |            |
|                    |          | 3        | Overall    | Status   |          | 0K<br>1 |          |           | - 1     |                             |            |
|                    |          | 4        |            | actions  |          | 1       |          |           |         |                             |            |
|                    |          |          |            |          |          |         |          |           |         |                             |            |
|                    | <u> </u> |          |            |          |          |         |          |           |         |                             |            |

The well plate can show graphically the results in different ways. It can either show the **Fractions Overview**, **Overall Status, Total Fractions, Total QC Fractions, Total Good Fractions,** or the **Controls Chart**.

| ell Plate            |              |                 |     |     |     |   |     |    | Well | Plate   |           |          |         |        |        |          |          |   |    |   |
|----------------------|--------------|-----------------|-----|-----|-----|---|-----|----|------|---------|-----------|----------|---------|--------|--------|----------|----------|---|----|---|
| 1 2                  | 3 4          | 5               | 6   | 7   | 8   | 9 | 10  | 11 |      | 1       | 2         | 3        | 4       | 5      | 6      | 7        | 8        | 9 | 10 | 1 |
| 0/1 1/2 2            | 2 2/2        | 0/0             | 1/1 | 2/2 | 1/1 |   |     |    | Ac   | ok      | review    | review   | ok      | ok     | review | review   | review   |   |    |   |
|                      |              |                 |     |     |     |   |     | Þ  | 4    |         |           |          |         |        |        |          |          |   |    |   |
| sults                |              |                 |     |     |     |   |     |    | Resu | lts —   |           |          |         |        |        |          |          |   |    |   |
| Fraction Analysis Re | the          |                 |     |     |     |   |     |    | E    | raction | Analysis  | Result   |         |        |        |          |          |   |    |   |
|                      |              |                 |     |     |     |   |     |    |      |         |           |          |         |        |        |          |          |   |    |   |
| Result in Well Plat  | e: Fractions | Overvie         | w   |     |     |   | Ŧ   |    |      | Result  | in Well F | Plate: 0 | verall  | Status |        |          |          |   | Ŧ  |   |
| Canaral Era          | Fractions    | Overvie         | W   |     |     |   |     |    |      |         |           | _        |         |        |        |          |          |   |    |   |
| General Fra          | Total Fra    | tatus<br>ctions |     |     |     |   | - h |    | Well | Plate - |           |          |         |        |        |          |          |   |    |   |
| Contro               | Total QC     | Fraction        | s   |     |     |   |     |    |      | 1       | 2         | 2        | 4       | E      | 6      | 7        | 0        | 0 | 10 | - |
| 1 Fractions F        | Controls     | Chart           | ons |     |     |   |     |    | L C  | -       | 2         | 5        | -       | ,<br>, |        | <u> </u> | <b>•</b> | 9 | 10 |   |
| i indenono e         |              |                 |     |     |     |   |     |    | A    |         |           |          |         |        |        |          |          |   |    |   |
|                      |              |                 |     |     |     |   |     |    |      |         |           |          |         |        |        |          |          |   |    |   |
|                      |              |                 |     |     |     |   |     |    |      |         |           |          |         |        |        |          |          | - |    | - |
|                      |              |                 |     |     |     |   |     |    | Resu | ilts —  |           |          |         |        |        |          |          |   |    |   |
|                      |              |                 |     |     |     |   |     |    | F    | raction | Analysis  | Result   |         |        |        |          |          |   |    |   |
|                      |              |                 |     |     |     |   |     |    |      |         |           |          |         |        |        |          |          |   |    |   |
|                      |              |                 |     |     |     |   |     |    |      | Pocult  | in Well I | Vator C  | ontrole | Chart  |        |          |          |   |    |   |

The **Fractions Overview** states the number of fractions to keep (for QC or Review) / the total number of fractions collected.

Eg. (1/2) means the sample has 2 fractions, 1 of which is to be kept for either QC or review.



- Grey, which indicates that no fractions are collected.
- Blue, which indicates that no fractions should be kept.
- Orange, which indicates that at least one fraction requires review.
- Green, which indicates that all analyzed fractions are okay for quality control.

Click on a specific dataset to view the corresponding results and spectrum.

The **Results** section includes four tabs: General, Fractions, Status, and Controls tabs.

#### 4.1. The General tab

This tab displays the overall results from the analysis.

| Ger | neral   | Fractions S    | Status Controls |
|-----|---------|----------------|-----------------|
|     | F       | Parameter      | Value           |
| 1   | Samp    | le             | D541            |
| 2   | Target  |                | 351.183443674   |
| 3   | Mono    | isotopic Mass  | 351.18344       |
| 4   | Target  | RT             | 3.314           |
| 5   | Overa   | ll Status      | review          |
| 6   | Total I | ractions       | 2               |
| 7   | Total ( | QC Fractions   | 1               |
| 8   | Total ( | Good Fractions | 2               |

#### 4.2. The Fraction tab

In this tab, you can review detailed results for each collected fraction, including vial position in the rack where the sample was collected, start/end RTs for the collected fraction, the assigned main ion, and the type of fraction peak.

The **lon** column displays the most intense m/z in the MS spectrum, and within parentheses, the type of ion is indicated based on the configuration in <u>Molecule Match Settings</u>: MH+, fragment, adduct, etc. If this ion is not identified under the analysis conditions, a "?" is displayed in parentheses.

| art End Jon Type                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------|
| are the ion type                                                                                                       |
| 37 3.340 248.20 (fragment) Impure                                                                                      |
| 40 3.387 296.19 (?) Impure                                                                                             |
| 37         3.340         248.20 (fragment)         Impure           40         3.387         296.19 (?)         Impure |



In this tab, you can inspect the scoring results for each collected fraction: the number of chromatographic peaks, their height, the MS purity, and the proposed action.

The score peak height and MS purity scores are determined based on the configured parameters as explained in the <u>scoring scheme</u>. The cells are color-coded and include symbols to represent the obtained score:

- "✓" and a green background indicate that the value is higher than the "high" threshold  $\rightarrow$  The assigned score is HIGH.
- "?" and a yellow background indicate that the value is between the "low" and "high" thresholds → The assigned score is MEDIUM.
- "×" and a red background indicates that the value is lower than the "low" threshold → The assigned score is LOW.



You have the option to manually override the assigned **Action** and choose another option. To do this, just click on the **Action** drop-down in the table and select your desired value. As you make this change, both the table and the well plate graphics will be updated accordingly.

| ntrols |                                      |   |
|--------|--------------------------------------|---|
| urity  | Action                               |   |
|        | review                               | - |
|        | <mark>qc</mark><br>review<br>dispose |   |

#### 4.4. The Controls tab

In this final tab, the results of the controls are presented. The number of detected fractions is recorded in the **Value** column. When the number of collected fractions exceeds the predefined threshold, this is flagged with a color and message as customized in the plugin settings.





Fraction Analysis results can be reviewed and edited when needed. You can correct peak picking, assignments, etc., and reanalyze your sample (**Analyze again**) or the whole dataset (**Analyze again all results**).



# 5. Fraction scoring and decision logic

Fraction scoring relies on the evaluation of three criteria for each fraction:

- 1. **Mass Purity:** This is calculated as <u>previously described</u> and is categorized into one of three 'traffic light' regions (red, orange, green) based on the 'high/low' thresholds set in the brick.
- 2. **UV Response:** The UV (or other defined signal) for each fraction is assessed for height, either against an absolute or relative scale, depending on the brick's <u>settings</u>. Similar to mass purity, it falls into one of the three 'traffic light' regions according to the 'high/low' threshold settings.
- 3. **Number of Maxima in UV:** If the UV signal for a fraction contains more than one maximum, it suggests impurity, regardless of the mass purity. This could be due to higher time resolution in the UV or the presence of isomers.

These criteria collectively guide the brick's categorization of each fraction into one of the following categories:

- 'qc': This category designates fractions that are considered sufficiently pure to proceed into the next stages of the process, typically involving final quality control assessments.
- **'dispose'**: Fractions falling into this category contain minimal product or are highly impure. It is advisable to dispose of these fractions as combining them would likely reduce overall purity without significantly increasing yield.
- **'review'**: The statistical results for the fraction are unclear, and it is recommended that a human reviews the outcome.

The figure below illustrates how scores are evaluated and combined to define the action.



For more detail on Mnova Gears' options, please refer to the Mnova Gears manual.

P/N 462 R1