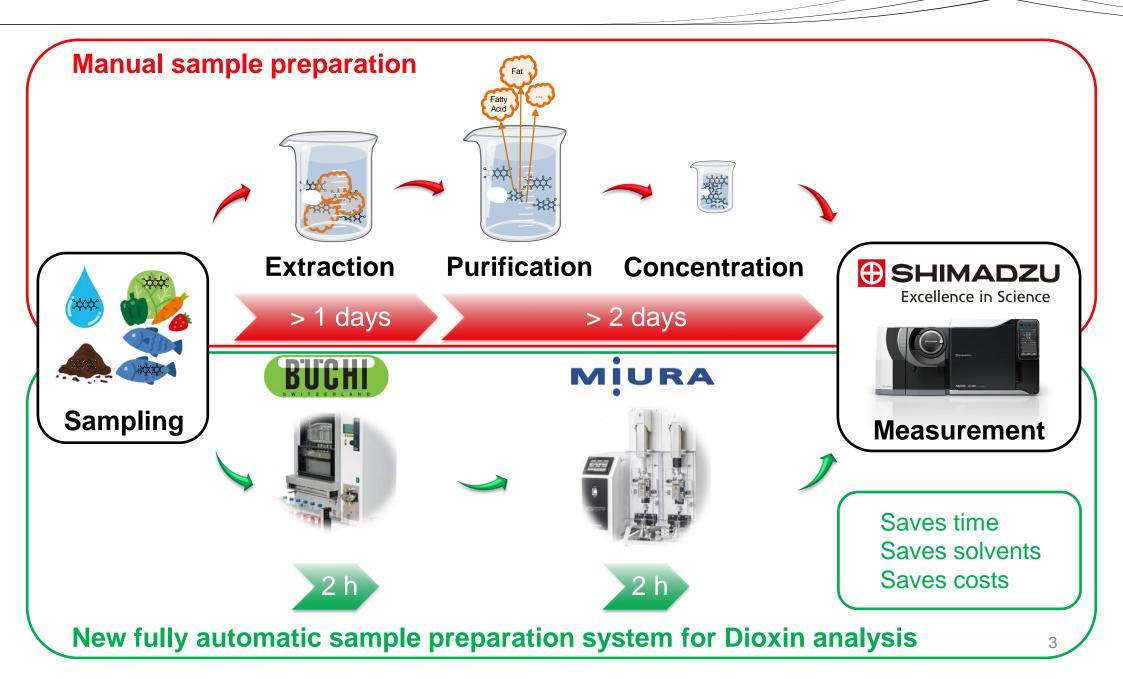


Welcome to the webinar

Sample purification and GC – MS/MS for dioxin analysis

Background


Market trend

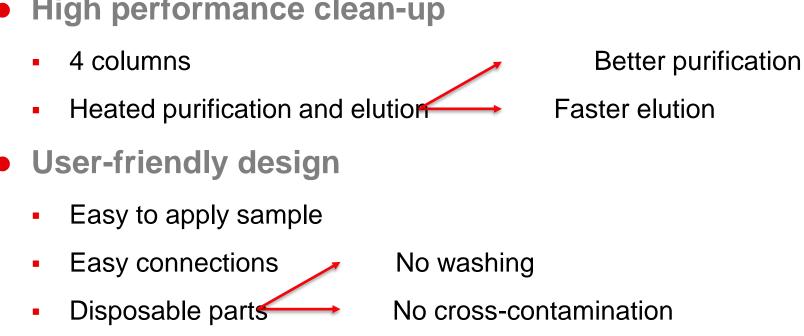
- In the past, Dioxins in food had been analysed by GC HRMS
- Recently, GC MS/MS was also confirmed as official method

Requirement of customer

- Start analysis immediately without adjusting the analysis conditions
- Create reports showing items required by EU regulations
- Compare the respective quantitative capabilities of GC MS/MS and GC HRMS
- Fast and simple sample preparation

Manual vs. Automated Sample Prep.

Perfect separation of PCBs and dioxins in one fraction each with excellent quality

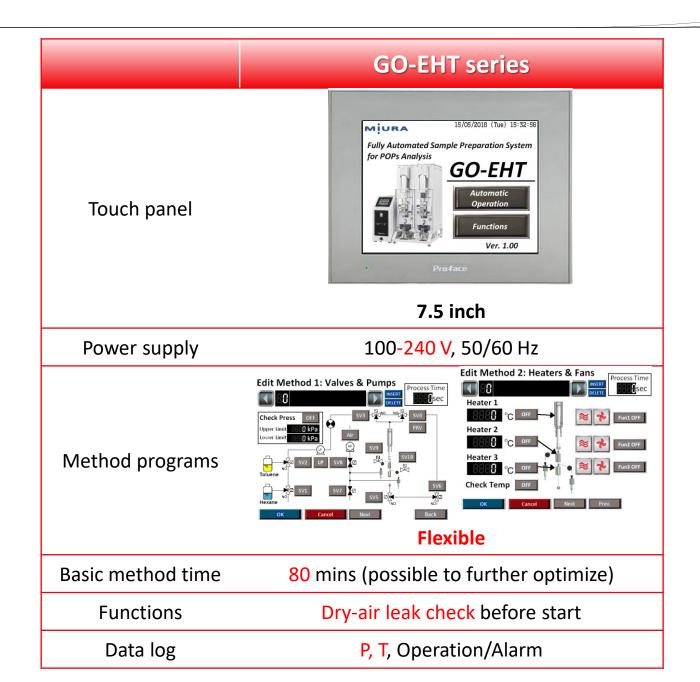

(1)

(2)

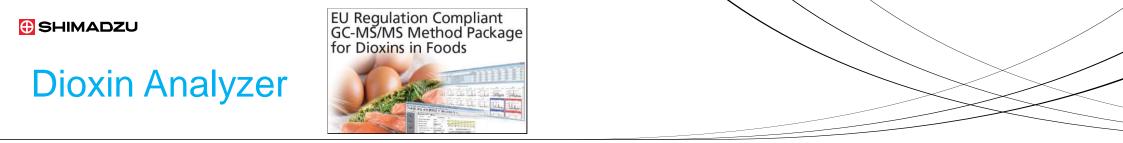
(3)

(4)

Features of the Miura GO-EHT System

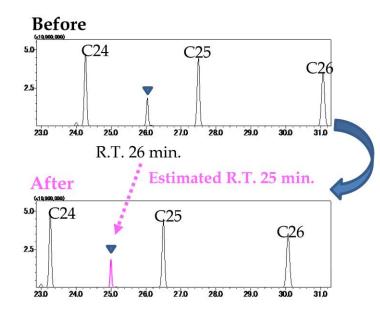

High performance clean-up

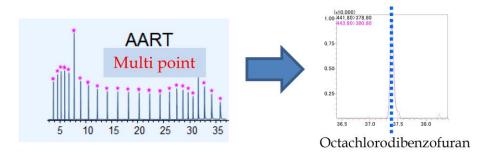
User-friendly design


() SHIMADZU

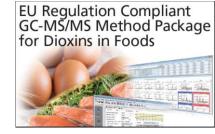
Unique flow switching

New Miura GO-EHT Features



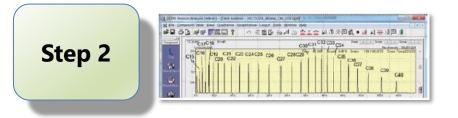

- > 1. Method Files Registered with the Optimal Conditions
 - Method files for DXNs, PCBs, and BFRs

fe 18 1		18		18		-11	200.0	10
	t		11 1011	1	1	1		
ITAL		A-4 A-2-	4		21-21-3	- 44		1
		A	A					
No. 728	The second s	to bear 20	-	368	2628	614 	-	
1	-					1	1 11	
-					1111	151	11111	
NYTE A	manage of	-	CONTRACTOR OF				0 11	
	. il					Sec.	11 11	
ative and the	RIIMAN		HERE		100	1		



Automatic adjustment of retention times (AART)

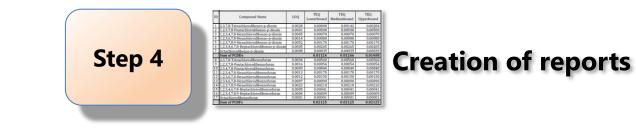
Dioxin Analyzer


2. Report creation tool, capable of outputting items required by regulation

3. Method file performance confirmed by the analysis of 44 types/201 samples of foods and feeds

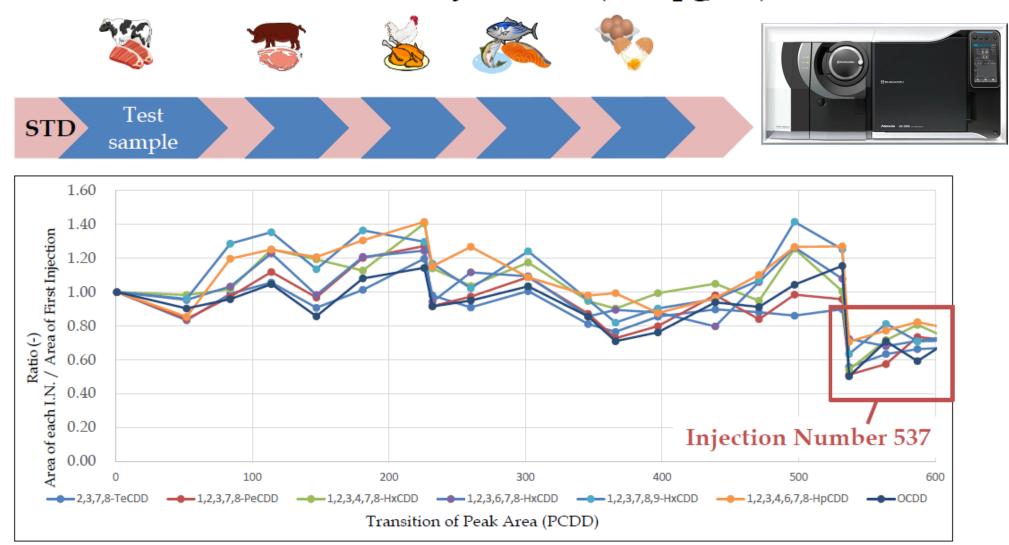
	 Animal feed product 	 Bétaïne anhydre
	 BétaïneHCL 95% 	• Bovine fat
	 Bovine milk 	 Bovine muscle
	• Compound fish food	 Dairy product
	• Diverse nature	• Eels
	• Fish	 Fresh product
	• Game liver	• Goat fat
	 Goat liver 	• Grasses
	• Milk	 Molluscs
	 Mussels 	• Oilcake
	• Ovine fat	• Ovine liver
	 Oysters 	 Pork fat
5	 Poultry eggs 	 Poultry muscle
	 Powder 	• QC
	 Salmon 	 Sardine
	 Scallops 	• Shellfish
	• Shrimp	• Thréronine
	• Veal fat	• Vitamine K4
	 Yellow Pigment 	• other

Steps from the Preparation for Analysis



Creation of method files AART, Calibration curve

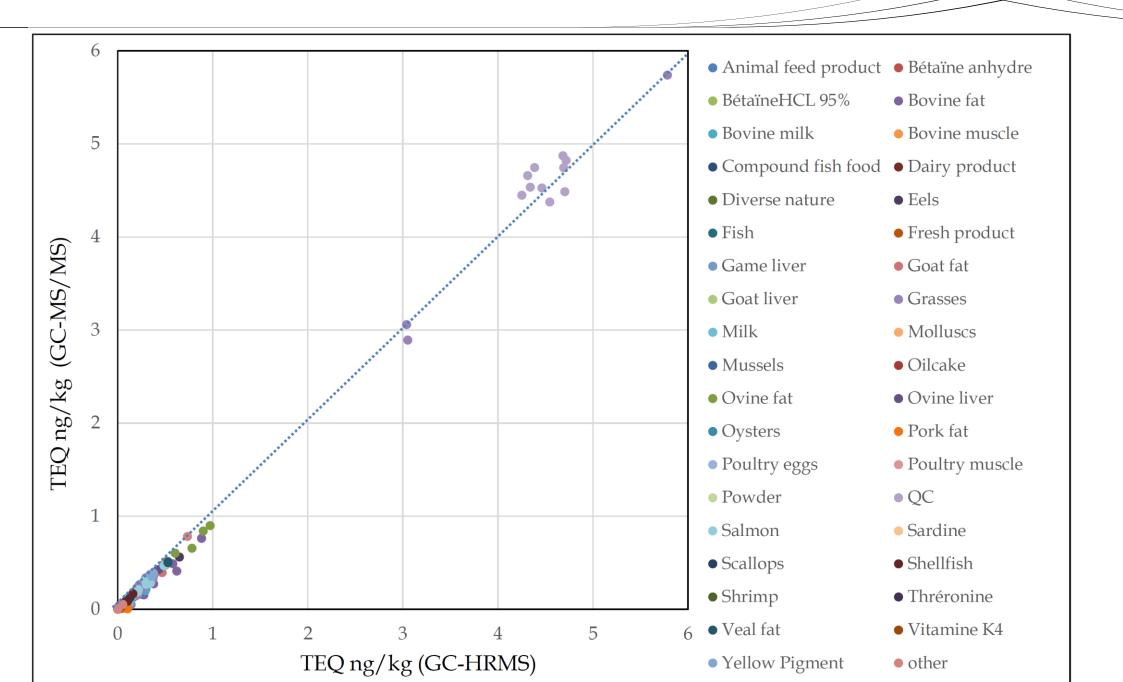
Analysis of samples


Analysis result

ID	Company ANama	Calibration Point Concentration						Average	RRF	Dev(%)	
I.D.	Compound Name	Level 1 (pg/uL)	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	(level 1)	*Criteria <30%	
1	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.025	0.050	0.100	0.250	0.500	1.000	1.212	1.144	5.60	
2	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.025	0.050	0.100	0.250	0.500	1.000	1.089	0.990	9.11	
3	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.025	0.050	0.100	0.250	0.500	1.000	1.106	1.157	-4.62	
4	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.025	0.050	0.100	0.250	0.500	1.000	1.043	1.043	-0.06	
5	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.025	0.050	0.100	0.250	0.500	1.000	1.039	0.936	9.95	
6	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.025	0.050	0.100	0.250	0.500	1.000	1.033	1.115	-7.86	
7	Octachlorodibenzo-p-dioxin	0.050	0.100	0.200	0.500	1.000	2.000	1.180	1.261	-6.84	
8	2,3,7,8-Tetrachlorodibenzofuran	0.025	0.050	0.100	0.250	0.500	1.000	1.159	1.213	-4.65	
9	1,2,3,7,8-Pentachlorodibenzofuran	0.025	0.050	0.100	0.250	0.500	1.000	1.047	0.974	6.94	
10	2,3,4,7,8-Pentachlorodibenzofuran	0.025	0.050	0.100	0.250	0.500	1.000	1.038	0.962	7.35	
11	1,2,3,4,7,8-Hexachlorodibenzofuran	0.025	0.050	0.100	0.250	0.500	1.000	1.106	1.358	-22.81	
12	1,2,3,6,7,8-Hexachlorodibenzofuran	0.025	0.050	0.100	0.250	0.500	1.000	1.052	1.134	-7.82	
13	2,3,4,6,7,8-Hexachlorodibenzofuran	0.025	0.050	0.100	0.250	0.500	1.000	1.000	0.923	7.67	
14	1,2,3,7,8,9-Hexachlorodibenzofuran	0.025	0.050	0.100	0.250	0.500	1.000	1.021	1.205	-18.09	
15	1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.025	0.050	0.100	0.250	0.500	1.000	1.097	1.157	-5.46	
16	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.025	0.050	0.100	0.250	0.500	1.000	1.056	1.080	-2.27	
17	Octachlorodibenzofuran	0.050	0.100	0.200	0.500	1.000	2.000	0.981	0.975	0.66	

() SHIMADZU

Result of the robustness test


• Transition of the sensitivity of STD (0.05 pg/uL)

Lifetime was over than 500 injection

🕀 SHIMADZU

Method validation

Dioxins S³ Smart Solution Systems

Extraction

Clean-up

Analysis

Thank You for your Attention