

James Little August 29, 2023 38 years Eastman Chemical Company 7 years Mass Spec Interpretation Services <u>https://littlemsandsailing.wpcomstaging.com/</u>

Link to GCMS Schematic Above

Link to University Logos

Free NIST GC-MS Software Lab for Universities

Part 1: Very Basic Theory of GCMS Analyses

Part 2: Installation of Software Part 3: Library Searches Part 4: Processing GCMS Data with AMDIS Part 5: Understanding EI Fragmentation with MS Interpreter Part 6: Structure Searches with Input from ChemSketch Part 7: Creating a User Library Part 8: Advanced Processing with NIST Software

Link to Training Website

Hyphenated Technique: Gas Chromatography-Mass Spectrometry (GC-MS)

"GC-MS remains one of the most powerful, flexible, and widely used tools for analyzing chemical mixtures in drug screening, forensic, environmental, and trace analysis, as well as other applications."

Complex Mixtures Separated by Chromatography for Mass Spec Analyses

Separated by Polarity and/or Boiling Point

Gas Chromatography Link

Typical Gas Chromatography System Equipped with El Mass Spectrometer as Detector

Link to Diagram Above

Electron Ionization (EI) Source

Link to El Source Diagram

Quadrupole Mass Spec (MS) Detector Under Vacuum

Agilent MSD Quadrupole Assembly Link

-Change RF and DC Voltages to send *one* m/z value to detector at a time
-e.g. the quad scan starts at m/z 10, 11,..., 800 in <1 second to generate a mass spectrum
-Fast enough to get several spectra across a GC peak for one component
-Mass/charge vs. intensity pairs stored on PC for processing with NIST software

Link to Quadrupole Diagram

Electron Ionization (EI) Mass Spectrum of Acetone Very Reproducible, *Easily* Found in Spectral Library Search via Computer

Electron Ionization (EI) Mass Spectrum of Acetone Isotopic Ions from Presence of ¹³C

43

100 -

Carbon A+1 Element (A=abundance) (Shifted by 1 Dalton) Ratio of ¹²C to ¹³C 100:1.1

Link to El Spectrum

Electron Ionization (EI) Mass Spectrum of Methylene Chloride More Abundant Isotopes *Easily* Noted and Found in Computer Search

Element	А		A + 1		A + 2			Flement
	Mass	%	Mass	%	Mass	%		type
н	1	100	2	0.015			н	"A"
c	12	100	13	1.1*			С	"A + 1"
N	14	100	15	0.37			Ν	"A + 1"
0	16	100	17	0.04	18	0.20	0	"A + 2"
F	19	100					F	''A''
Si	28	100	29	5.1	30	3.4	Si	"A + 2"
Р	31	100					P	''A''
S	32	100	33	0.79	34	4.4	S	"A + 2"
CI	35	100			37	32.0	CI	"A + 2"
Br	79	100			81	97.3	Br	"A + 2"
I	127	100					1	A
*Wapstra and Audi (1986). ^b 1.1 ± 0.02, depending on source.								2

10

Examples of Very Distinct Presence of A+2 Elements in a Molecular Ion Very Obvious and Easily Found in Computer Search

Not All Compounds Have a Molecular Ion!

-Molecular ion not stable
-Immediately fragments
-*However*, still easily identified by computer search

Example of Total Ion Chromatogram for a GC-MS Analysis

Brief Videos of GC-MS 1st Manual Injection (3:08 min) 2nd Automated Injection (3:10 min)

Link to Manual Injection 1st YouTube Video

Link to Automated Injection 2nd YouTube Video