Addressing the World Helium Shortage For Gas Chromatography

Helium Conservation and Converting GC Methods to Nitrogen and Hydrogen Carrier Gas

James D. McCurry, Ph.D. Senior Scientist Agilent Technologies

Presentation Outline

Carrier Gas Decision Tree

• Decision making guide to fit your carrier gas requirements

Helium Conservation

- Smarter helium use with new hardware/software tools
- No need to revalidate existing GC methods

Migrating Existing Helium GC Methods to H_2 and N_2

Best practices for obtaining the same results and minimizing method revalidation

Carrier Gas Decision Tree

Continue using helium, but in a smarter way

Reducing Helium Use With Conservation New 7890B Helium Conservation Module

- Automatically switches carrier gas supply to N₂ Standby during idle time
- Integrates into the new 7890B Sleep and Wake function
- Combined with Helium Gas Saver to GREATLY reduce helium consumption
- Better alternative to just "shutting off the GC"
 - No system contamination with ambient air exposure
 - Faster re-start of heated zones

Helium Conservation Module

Seamlessly integrated onto 7890 GC hardware and software

- Built on 5th generation EPC
- Fully controlled by Agilent data systems
- Purge channel prevents
 cross contamination of gases
- Precise pressure control between tank and GC
- Switch between gases within 15-30 min for most detectors

How Does It Work?

Helium Savings Mode (Nitrogen Carrier, or Sleep Mode)

How Does It Work?

Normal Operation Mode (Helium Carrier or Wake Mode)

How It Works: Configuring Sleep/Wake Operation Simple, Straight Forward Setup

Custom	at best matches how you	i use this instrument.	•		
Schedule					
Day	Set Wake Method	🧿 Wake Time	Set Sleep Method	C Sleep Time	
Sunday					
Monday					
Tuesday			E		
Wednesday					
Thursday	(m)		(D)		
Friday			E		
Saturday					
Water Martine 1	Edit Visio Mathed		Chara Mathada E	6 Chan Mathad	
Wake Method:	Edit Wake Method		Sleep Method Ed	fit Sleep Method	

Performance: No Change in Chromatography After N₂ Carrier Sleep Method. GC/FID Analysis

Performance: Pass MS Tune Within 15min After Switching From N₂ To He As Carrier. GC/MSD

		Relative to		Relative to		
Time (min)	5 mL/min He	Saturation	2 mL/min He	Saturation		
3	1735168	20.69%	8388096	100.00%		
4	1033280	12.32%	4959232	59.12%		
5	590080	7.03%	1618944	19.30%		
6	354112	4.22%	722944	8.62%		
7	228480	2.72%	333696	3.98%		
10	56984	0.68%	102576	1.22%		
15	9052	0.11%	17080	0.20%		

Helium Savings Calculator – Single GC Channel

Extend helium supply and lower cost using conservation techniques

Ag	ilent Tec	hnologies
Method: Column:	ASTM D4815 - I PDMS 30m x 0.3	Ethanol in Gasoline 53mm x 2.65um
GC Flow Conditions		
He Carrier Flow (mL/min):	8	
He Split flow (mL/min):	70	
Gas Saver Flow (mL/min):	20	
Gas Saver On (min):	3	
Run Time(min.):	20	
Gas Volume in Cylinder (L):	8000	
Runs per Day:	30	
He Cylinder Cost (\$):	300	
N2 Cylinder Cost (\$):	60	
Parameter	No Conservation	Helium Conservation
Daily He Usage (L)	112	21
He Cylinder Life (days)	71	376
Daily N ₂ Usage (L)	0	24
N ₂ Cylinder Life (days)	0	340
Yearly He Cost (\$)	\$1,537	\$292
Yearly N2 Cost (\$)	\$0	\$64
Yearly Total Gas Cost (\$)	\$1.537	\$356

Example

- ASTM Method D4815
 - Widely used to measure ethanol in gasoline
 - Helium cylinder last 2 months under normal operation
- Helium Conservation
 - Helium cylinder life extended to 12 months
 - 4x yearly gas costs per year

Carrier Gas Decision Tree

Migrating GC methods to nitrogen and hydrogen

Safety Considerations for Hydrogen Migration

GC, GC/MS: Both offer H₂ enabled features

- Agilent H₂ safety letter and safety manuals available
- GC levels of safety design
 - Safety Shutdown
 - Flow Limiting Frit
 - Oven ON/OFF Sequence
- Newer version 6890, 7890 GC and 5773, 5975 MSD offer greater safety than older versions of GC and GC/MSD
- Plumbing Considerations
 - Use chromatographic quality stainless steel tubing
 - Do not use old tubing (H₂ is known as scrubbing agent)
 - Especially don't use old copper tubing (brittleness is a safety concern)

Source of Hydrogen

H₂ Generator – preferred

- Very clean H_2 , >99.9999% available
- More consistent purity
- Built-in safety considerations
- Make sure to buy a good one with a low spec for water and oxygen
- Parker's H-MD are used in LFS and SCS

H₂ Cylinder

- Consider gas clean filter
- Possible to add safety device

Agilent Restricted

Use N₂ as carrier gas

Many helium GC methods suited to nitrogen conversion

- Readily available and less expensive gas
- No safety concerns
- Suitable for simple routine analysis (with sufficient resolution)
- More inert than H₂, especially with PLOT/Micropacked columns
 - Some compounds catalytically reduced in H₂
- Most helium GC methods have too much resolution
 - lower column efficiency with N₂ won't affect results
- 2-D GC ideally suited to nitrogen
 - column combinations designed to solve specific resolution problems

Potential issues

- Reduced chromatographic resolution at high flows
- Not suitable for GC/MSD and certain GC detector applications

Helium Carrier Gas Alternatives

We would like to know the actual time the

component spends in the stationary

 $t_{R}' = t_{R} - t_{m}$ $n = \left(\frac{t_{R}}{W_{h}}\right)^{2}$

^tR = Corrected Retention Time.

n = effective theoretical

plates.

Important Theoretical Considerations Relating To Peak Efficiency

Sharp, narrow peaks in a chromatogram is an indication of a high efficiency GC column.

- Remember that **efficiency** is represented mathematically by the symbol "*N*" called *Theoretical Plates*, and that the larger *N* is, the better the resolving power of the column (i.e., higher resolution).
- Resolution is described mathematically by the symbol R_s and its numeric value tells how well two adjacent peaks are separated from each other.

$$R_s = \frac{\sqrt{N}}{4} \left(\frac{k}{k+1}\right) \left(\frac{\alpha-1}{\alpha}\right)$$

A resolution value of 1.5 tells us that two peaks are baseline separated. The greater (higher) the R_s value, the more separation that has been achieved.

Calculating Efficiency

phase.

Let's relate "n" to the length of the column.

Plates per meter (N) = $\frac{n}{1}$

Height equivalent to a theoretical plate (HETP) $= \frac{L}{n}$

Thus, the more efficient the column, the bigger the "N" the smaller the "HETP".

Efficiency is a function of the carrier gas linear velocity or flow rate.

The minimum of the curve represents the smallest HETP (or largest plates per meter) and thus the best efficiency. "A" term is not present for capillary columns.

- Plot of HETP versus linear velocity is know as the Van Deemter plot.
- The linear velocity value at the minimum of the curve is the optimum value for achieving the best efficiency.

Helium Carrier Gas Alternatives Let's Make This Easy

Sharp, narrow peaks in a chromatogram is an indication of a high efficiency GC column.

Agilent Technologies

Helium Carrier Gas Alternatives Let's Make This Easy

- Goal: change carrier gas while keeping other method conditions the same
 - use the same column
 - use the same oven program
 - adjust column flow or holdup time to:
 - maintain same peak elution order
 - maintain same peak retention times (or as close as possible)
- Easier method revalidation using this approach
 - minimal changes to timed integration events
 - minimal changes to peak identification table
- For N₂, test resolution of key components
 adjust GC conditions (temp, flow) if needed
- Use tools built into the Agilent Chemstation to guide us through the process

The Tyranny of Van Deemter Why Nitrogen Gets a Bad Rap for Capillary GC

- N₂ actually provides the best efficiency, but at a slower speed
- Most helium GC methods have too much resolution
 - Lower N₂ efficiency at "typical" helium flows can still provide good enough resolution
- Most GC methods now use constant flow
 - Efficiency losses with temp programming are not as severe

Many Helium GC Have Excess Resolution EN14103 – GC Analysis of FAME content in biodiesel

HP-INNOWax, 30m x 0.25mm ID x 0.25 um

Helium Carrier Gas Alternative

Test Case 1: ASTM D6584 for Free and Total Glycerin in Biodiesel

COC Inlet:	Oven Track Mode
Pre-column:	Ultimetal 2m x 0.53mm ID
Column:	Ultimetal DB5HT, 15m x 0.32mm ID x 0.1 df
Column Flow:	Helium at 3.0 mL/min (50 deg C)
Column Pressure:	7.63 psi constant pressure mode
Initial Column Temp:	50 °C for 1 min.
Oven Ramp 1:	15 °C/min to 180 °C
Oven Ramp 2:	7 °C/min to 230 °C
Oven Ramp 3:	30 °C/min to 380 °C, hold 10 min.
Detector:	FID with 25 mL/min N_2 makeup

Set the Control Mode: Flow or Holdup Time

Try the same flow or holdup time of the original Helium method

Configure Inlet for Carrier Gas in Chemstation

New Windows 7 Method Translation Calculator Another useful tool for carrier gas calculations

🖳 Agilent Technologies Method Translator 🛛 🕞 🗐						
Speed gain	Last file imported:					s) 📴 🛃
1.0000 Translate	Original Method	Parameters		Calculated	Method Pa	rameters
Best Efficiency	Gas He	•		Gas	N2	•
Length (m)	-	30 m	۵	30 m	-	
Inner Diameter (µm)		320 µm	3	320 µm		1.1.1.1.1.1
Film Thickness (µm)		0.25 µm		0.25 µm		1 1 1 1 1
Phase Ratio	· · · · · · · · · · · · · · ·	320	æ	320	· · · · · ·	1 1 1 1 1 1
Inlet Pressure (gauge)	-	7.0569 psi		6.4601 psi		1 1 1 1 1
Outlet Flow (mL/min)		1.3158 mL/min		1.2921 mL/min	1 1 1 1 1	· · · · · ·
Average Velocity (cm/s		24.342 cm/sec	.	24.342 cm/sec	1 1 1 1 1	· · · · · ·
Outlet Pressure (abs)	-0	14.696 psi 🔹	.	14.696 psi 🔹	-0	
Holdup Time		2.0541 min		2.0541 min		
Outlet Velocity (cm/s)		30.468 cm/sec		29.919 cm/sec		
Isothermal	# Ramp Rate Final Te (°C/min) (°C)	emp Final Time (min)		# Ramp Rate (°C/min)	Final Temp (°C)	Final Time (min)
Ramps	Init 60	1		Init	60	1
	1 5.0000 200	1		1 5.0000	200	1
	Total Run Time	30.00 min		Tota	I Run Time 30	0.00 min
Pressure Units PSI	Original Column Capacity:	2.48		Translated Colum	n Capacity:	2.48

- Flexible tool helps convert existing helium methods to alternative carrier
- Built into the New OpenLAB CDS Software
- Can also run as Windows 7 program
- Download from the Agilent Helium Update Page:

www.agilent.com/chem/heliumupdate

24

Wider Retention Time Variation Using the Same Flow as the Original Helium Method

Same Holdup Time (T_r) Gives Consistent Retention Times Compared to Original Helium Method

ASTM D6584 - Quantitative Results For Alternative Carrier Gas

Carrier gas has no effect on reported results

	Weight Percent				
	Helium	Nitrogen			
Glycerin	0.015	0.014	0.013		
Monoglycerides	0.226	0.216	0.223		
Total Glycerin	0.097	0.095	0.098		

Test Case 2: Analysis of Oxygenates in Gasoline Using 2-D Gas Chromatography

ASTM Method D4815 – Oxygenated Additives

- Ethers and alcohols from 0.1 wt% to 15 wt%
- Usually only one or two additives in a sample

Preliminary separation removes light hydrocarbons from sample

- Polar TCEP micro-packed columns retains ethers and alcohols
- Back flush TCEP column to non-polar capillary column (HP-1) to complete analysis

Configuration and Operation for D4815

Nitrogen carrier gas using original ASTM GC flows conditions

	D4815 Method
carrier gas	nitrogen
Inlet	Split/Splitless
inlet temperature	200 Deg C
TCEP column flow	5 mL/min
split vent flow	70 mL/min
split ratio	15:1
HP-1 column flow	3 mL/min
FID temperature	250 deg C
oven temperature	60 deg C isothermal
Run time	16 min

Analysis of MtBE and Ethanol in Gasoline using N₂ Carrier Gas

ASTM Precision Specifications

D4815 Precision Measures

		Repe	atability	Reproducibility	
Compound	Mass %	Spec	Observed	Spec	Observed
Ethanol	0.99	0.06	0.01	0.23	0.01
Ethanol	6.63	0.19	0.03	0.68	0.04
MtBE	2.10	0.08	0.01	0.20	0.01
MtBE	11.29	0.19	0.05	0.61	0.08

Accuracy Evaluation				
	MtBE mass			
Sample	known	found		
SRM2294 #1	10.97	10.61		
SRM2294 #2	10.97	10.60		
AccuStd Check	12.00	11.81		

Migration to H₂: -- Specific Considerations for GC/MS

H₂: Chromatographic Method Migration

Be aware:

- Consider flow limitation due to MSD pumping capacity
- Ensure >35 cm/sec flow rate (see Van Deemter Curves)
- Keeping similar peak elution order
- Consider column sample capacity

H₂ isn't a inert gas

- Consider full inert flow path
- Use lowest temp possible
- Avoid methylene chloride, carbon disulfide as solvent

H₂: Additional HW modification on GC/MS

Check Magnetic (5975 only)

- Ensure SN is printed on it
- Call CE if not

Use H2 optimized draw out lens

• PN: G2589-20045

Agilent Restricted

H₂ for GC/MS: Initial Setup

When start: customer should expect

- High background that looks like hydrocarbons 😣
- Reduced signal to noise (worse MDL) 8
- Significant tailing for many compounds (8)

Agilent Restricted

H₂ for GC/MS: Initial Setup

Overnight system clean up:

- After setup, purging and pump down
- Set the source to max temp for your source
- Reduce the EMV to 800V
- Leave the FILAMENT ON overnight.
- System will be cleaned in the morning
- Make a run with matrix to check
- Ready to go

H₂ for GC/MS: Analytical Result Expectations

- Sensitivity reduction: 2 5 times
- Trace conc. "reactive" compounds (e.g. flavor) may lost
- Possible spectrum infidelity
 - Observed ion ratio change for some compounds
 - Extra/missing ions, but often time not qualifier ions

	NIST Library Match	
	Helium	Hydrogen
Dichlorvos	924	867
Mevinphos	925	852
Ethalfluralin	927	897
Trifluralin	897	856
Atrazine	914	901
BHC-gamma (Lindane, gamma HCH)	925	858
Chlorpyrifos-methyl	922	897
Heptachlor	926	851
Malathion	916	836
Chlorpyrifos	901	890
DDE, p,p'-	934	903
Dieldrin	926	903
Hexazinone	901	832
Propargite	851	821
Leptophos	884	847
Mirex	903	881
Fenarimol	905	872
Coumaphos	864	804
Etofenprox (Ethofenprox)	906	842

Page 37

Agilent Restricted

Summary: Helium Conservation Benefits

Seamless integration

No need to revalidate existing GC methods Fully integrated with 7890B and CDS (OpenLAB, Mustang, Mass Hunter) Carrier gas ID and set points are a part of the method for compliance and transfer Easily implemented using new Agilent Sleep/Wake functions

• Greater reliability

Based on proven 5th generation AUX EPC 7890 provides warning if set points are not reached For hydrogen users, nitrogen substitution when not running GC

Greater performance

Purge channel prevents cross contamination of gases Delivers more stable gas pressure control from the tank regulator to the inlet EPC module Acts as an intermediate pressure regulator from the tank to inlet EPC to ensure greater analytical precision

Summary – Migration To H₂ and N₂

If you still need a helium alternative:

- For resolution critical methods, H_2 offer the best alternative
 - Agilent GC and GC/MS systems have many built-in safety features
- For many GC applications, N₂ offers a cheap, easy alternative without any safety worries
 - Many existing helium methods have too much resolution
 - N₂ can be used without changing any of the existing GC conditions
 - keep the holdup time the same as the original method
 - 2-D methods have high resolution built-in, so N₂ is ideally suited as a carrier gas
 - Valve-based or Deans switch, not GCxGC
- For more information on Helium Carrier Gas <u>www.agilent.com/chem/heliumupdate</u>

