Jessica Westland¹; Vivian Chen² and Elizabeth Almasi³; ¹Agilent Technologies, Wilmington, DE 19808, USA ²Agilent Technologies, Shanghai Company Limited; 200131, CHINA; ³Agilent Technologies, Santa Clara, CA 95051, USA.

Introduction

The global agricultural industry uses over a thousand pesticides for food and foodstuffs cultivation. Producers are compelled to use pesticides to meet the growing demand for reasonably priced food, resulting in the need for pesticide residue monitoring in commodities worldwide. Concurrently, simple sample preparation practices such as QuEChERS are routinely used for the preparation of food and feed samples, often leaving significant amount of matrix in the extracts. Analytical laboratories are challenged by these matrix residues, which with time negatively affect the response of the analyzed pesticides, and eventually require source cleaning. Agilent's JetClean self-cleaning ion source (JetClean) reduces the need for manual source cleaning while still allowing for the analysis of complex samples without losing sensitivity and reproducibility.

The Agilent JetClean utilizes carefully monitored hydrogen gas (H_2) introduction to the source, controlled by Agilent's MassHunter Data Acquisition Software. The appropriate H_2 flow (in the $\mu L/min$ range) generates conditions that clean the surfaces of the source, the lenses and other components. These actions aid in maintaining a stable detection environment and provide for response stability of the pesticides in difficult matrices.

JetClean has two operational modes:

- 1. Acquire and Clean (or on-line) mode, when H_2 is running during the analysis
- 2. Clean only (or off-line) mode when H_2 is introduced only post run or post sequence

Methodology: The analysis was conducted on an Agilent 7890B GC and 7010 Series Triple Quadrupole GC/MS. See Tables 1 - 3 for method parameters. The system was configured with a Multimode Inlet, equipped with an ultrainert liner (p/n: 5190-2293). The inlet was then connected to two HP-5ms UI columns (15 m \times 0.25 mm \times 0.25 μ m; p/n: 19091S-431 UI) coupled to each other through a purged ultimate union (PUU) for the use of backflushing (see Figure 1).

The H_2 cleaning was operated in the "Acquire & Clean" mode which allowed constant H_2 flow during the analytical runs.

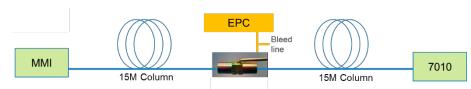


Figure 1. Column Configuration for Optimal MRM Application

Table 2. PUU Backflush Settings*			
Timing	1.5 min during post-run		
Oven temperature	310 °C		
Aux EPC pressure	~50 psi		
Inlet pressure	~2 psi		
*Backflush conditions were optimized for the application. A 1.5 min backflush duration may be too			

short for other methods. It can be extended up to 5 min duration

Table 4. Matrix Selection and Sample Preparation Used for Optimal MRM Application				
Category	Matrix	Sample Prep		
High Sugar	Organic Honey	5 g honey/5 mL water, EN salts, EN dSPE General		

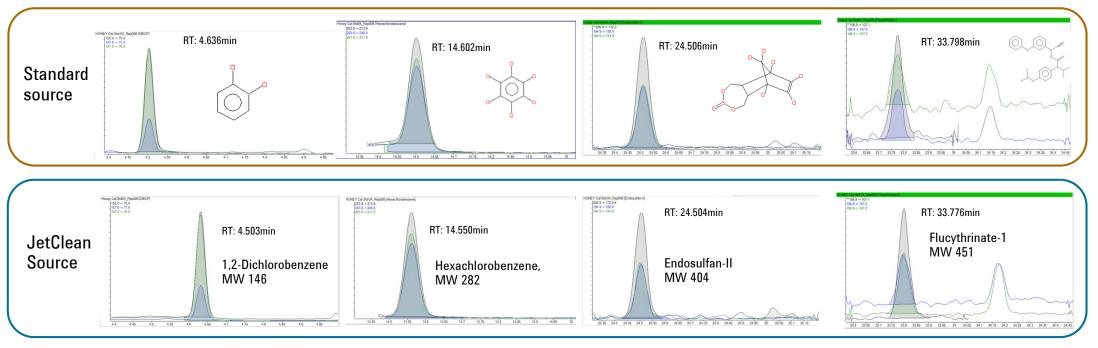
Table 1. 7890B GC Method Conditions				
Injection port liner	4-mm Ultra Inert liner with wool			
Injection mode	Hot-splitless			
Injection volume	1 μL			
Inlet temperature	280 °C			
Carrier gas	He, constant flow 1.00 mL/min (column 2 = 1.20 mL/min)			
		60 °C	1 min	
Oven program	40 °C/min	120 °C	0 min	
	5 °C/min	310 °C	0 min	
MS transfer line temperature	280 °C			

Table 3. 7010 MS/MS Parameters		
Electron Energy	70 eV	
Tune	atunes.eihs.tune.xml	
EM gain	10	
MS1 & MS2 resolution	Wide	
Collision Cell	1.5 mL/min N ₂ & 2.25 mL/min He	
Quant/Qual transitions	Matrix Optimized	
Dwell times	Time Segment (TS) specific*	
Source temperature	300 °C	
Quad temperatures	150 °C	
JetClean:	Acquire & Clean mode	

*The dwell times in each TS were the same, all with values over 10msec, resulting in a scan rate of ~5 scans/sec for the TS.

Experimental

Experimental


Operation: JetClean was initiated in the acquire and clean mode for this application. The MassHunter software allowed for the simple setup and operation of the process, all controlled in the MS domain.

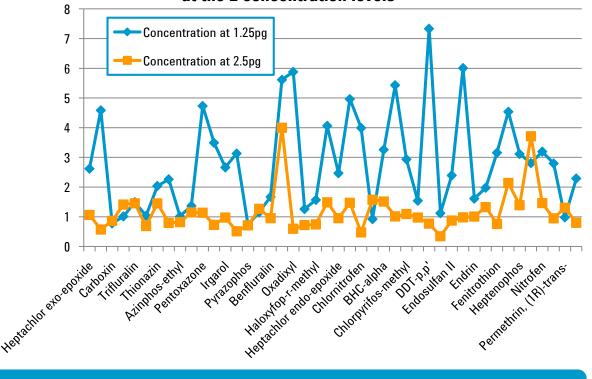
Ten and Resolt. Address Advanced Ino Souce: Et+ MS1 Catilian Cat Souce: Tenp. Emission Tamert @ 1 E CatVaire © Dit CatVaire ©	D00 τ 300 Energy 70 e// 1000 μA 0.0 Repeter 158 V © 2 km fbdp 168.5 V Exactor Dynamic V Patricina charter Patricina charter 2 355.5 V	Dynamic Rawg Dynamic Rawg Dist St Endle Mais Settig W KST Puble Dist Stan Mais Dist Stan Dist Stan	
Set Or Source Temp. Ramp Acquer	Ubinom Off Entance Lens Dynamic V Rugat Image: Compared and the second and	Gel Pauvele Delait Propine 0 to 200 stop 5	Tuning of the MS: Acquire and Clean mode of operation
	CheckTune limits have been restored at 5/20/2016 12:32:00 PM.	Door Help	
Tiple Quarkupole MX Method Exe Acquisitor Phrameters Cross Execution Phrameters Cross Execution Cross Executions Intel Fair Parameters Jud Can - distribut	Tune File Run Time @MAXYORE_JacCom_150AL.infin Brease Source Parameters Source Parameters Uns Source 0 Source Tomay Mode 0 Detector Setting 0 Use Data Solv 0 Detector Setting 0 Use Data Solv 0 Detector Setting 0 Min Server Unit Detector Setting 0 Min Server Unit Time Segments 1 Time Segments 1 <td>Scan Segments Image: Stan Segments</td> <td>Triple Quadrupole MS Method Editor Method Editor Acquisition Parameters Chromatograms Timed Events Instrument Curves Tune File Parameters JetClean HydrogenFlow (mL/min) 0.15 Apply Ok Reset Cancel Help Apply Ok Reset Cancel Help Apply Ok Reset Cancel Help Help Method Editor Cleaning Help Method Editor Cleaning HydrogenFlow (mL/min) D.15 Time File Parameters JetClean HydrogenFlow (mL/min) D.15 Method Editor Method Editor Method Editor Method Editor Time File Parameters Time File Parameters Time File Parameters Time File Parameters Time File Parameters</td>	Scan Segments Image: Stan Segments	Triple Quadrupole MS Method Editor Method Editor Acquisition Parameters Chromatograms Timed Events Instrument Curves Tune File Parameters JetClean HydrogenFlow (mL/min) 0.15 Apply Ok Reset Cancel Help Apply Ok Reset Cancel Help Apply Ok Reset Cancel Help Help Method Editor Cleaning Help Method Editor Cleaning HydrogenFlow (mL/min) D.15 Time File Parameters JetClean HydrogenFlow (mL/min) D.15 Method Editor Method Editor Method Editor Method Editor Time File Parameters Time File Parameters Time File Parameters Time File Parameters Time File Parameters
	2 3.00 MSM - 70.0 1352.3 10.0 2 6 1 3 4.39 MSM - 70.0 1352.3 10.0 2 6 3 3 4 5.00 MSM - 70.0 1352.3 10.0 2 3 3 5 5.77 MSM - 70.0 1352.3 10.0 2 5 5 MSM - 70.0 1352.3 10.0 2 5 5 MSM - 70.0 1352.3 10.0 2 5 5 7 MSM - 70.0 1352.3 10.0 2 5 5 7 MSM - 70.0 1352.3 10.0 2 5 7 MSM - 70.0 1352.3 10.0 2 5 7 MSM - 70.0 1352.3 10.0 2 5 7 MSM MSM - 70.0 1352.3 10.0 2 3 3 3 3 3 3 3 3	Full Scan Parameters Ender Middl Som Midd Som Bar Nass Eve Nass Ster jans in Threaded Polis Data Data Samples Expected ScanTime (mo) > 000 500 0.25 100 Apply Dis Beast Cancel Help	Incorporating the tune file and JetClean parameters in the acquisition method for GLP and easy transportability.

Results and Discussion

Agilent's Self-cleaning ion source has been successfully used for the extended, 64 analyte PAH analysis in environmental¹ labs and also in food laboratories, resulting in remarkable precision, accuracy, linearity and detection levels, which were sustained for extended periods of time (many months) without manual cleaning. Considering the benefits of the Self-cleaning ion source for PAH analysis, the use of the JetClean applied for cleaning the MS source for pesticide analysis was suggested.

Chromatographic Performance: The following chromatograms show analytes at 2.5 pg concentrations, eluting at the beginning, middle and at the end of the chromatographic run. The ion plots are of target compounds and their respective matrix optimized MRM transitions in organic honey using standard source configuration and with the JetClean source. The JetClean benefits on peak shape and baseline are more obvious on the later eluting, higher MW analytes.

ASMS 2016 TP 216


Agilent Technologies

Results and Discussion

Quantitative results: Table 5 lists the R² values and the statistically derived MDLs for representative target analytes of the over 170 various pesticides tested. The calibration ranged from 0.12 pg/ul - 50pg/uL for the majority of the analytes, although some were not included at the lowest level. The resulting R² values were very comparable for both source types. The MDLs were calculated from 10 replicate measurements of 1.25 $pg/\mu L$ concentration spiked honey extract using 99% confidence level. Lower MDLs were obtained for the majority of the analytes using the JetClean source, with an average of 0.151 pg MDL for the standard source and 0.081pg for the JetClean source. The replicate measurements performed at 1.25pg level resulted lower %RSD using the JetClean source, although they were comparable at the 2.5 pg level.

Table 5.				
Analista	R ²		MDL (pg)	
Analyte	STD	JetClean	STD	JetClean
Heptachlor exo-epoxide	0.994	0.992	0.085	0.022
Endrin ketone	0.993	0.996	0.041	0.016
Carboxin	0.991	0.994	0.021	0.025
Profenofos	0.994	0.996	0.023	0.036
Trifluralin	0.997	0.994	0.088	0.033
Alachlor	0.996	0.978	0.119	0.050
Thionazin	0.994	0.994	0.097	0.038
Dimethoate	0.999	0.992	0.150	0.028
Azinphos-ethyl	0.999	0.995	0.063	0.071
Fenthion sulfone	0.996	0.994	0.046 0.137	0.040 0.034
Pentoxazone Iprodione	0.998 0.993	0.993 0.999	0.137	0.034
Irgarol	0.993	0.999 0.997	0.041	0.029
Phosphamidon II	0.995	0.997	0.235	0.037
Pyrazophos	0.994	0.996	0.042	0.056
Terbufos	0.994	0.996	0.078	0.032
Benfluralin	0.991	0.994	0.143	0.042
Ethofenprox	0.996	0.992	0.161	0.036
Oxadixyl	0.994	0.994	0.245	0.030
Endosulfan I	0.995	0.996	0.027	0.032
Haloxyfop-r-methyl	0.999	0.994	0.085	0.060
Tetrachlorvinphos, E-isomer	0.998	0.996	0.112	0.029
Heptachlor endo-epoxide	0.999	0.992	0.100	0.042
Methoxychlor, p,p'-	0.994	0.996	0.170	0.046
Chlornitrofen	0.996	0.997	0.070	0.020
Bendiocarb	0.994	0.937	0.719	1.263
BHC-alpha	0.995	0.995	0.221	0.098
Chlorobenzilate	0.996	0.995	0.557	0.118
Chlorpyrifos-methyl	0.994	0.993	0.270	0.075
DBCP	0.995	0.986	0.155	0.208
DDT-p,p' Dichlorobenzene, 1,2-	0.993 0.999	0.996 0.993	0.427 0.129	0.105 0.184
Endosulfan II	0.999	0.993 0.998	0.129	0.184
Endosulfan sulfate	0.997	0.996	0.037	0.040
Endrin	0.992	0.994	0.045	0.030
Ethoprophos	0.995	0.995	0.072	0.016
Fenitrothion	0.993	0.991	0.313	0.060
Flucythrinate I	0.997	0.992	0.040	0.023
Heptenophos	0.992	0.996	0.264	0.045
Hexachlorobenzene	0.999	0.997	0.227	0.116
Nitrofen	0.990	0.995	0.097	0.030
Parathion-methyl	0.994	0.995	0.272	0.070
Permethrin, (1R)-trans-	0.997	0.968	0.033	0.105
Pirimiphos-methyl	0.996	0.994	0.152	0.042

%RSD ratio of the Standard source / JetClean source results obtained at the 2 concentration levels

Conclusions

Approximately 170 various pesticides were analyzed in organic honey on the 7010 Series Triple Quadrupole GC/MS using standard and JetClean sources in the Acquire and Clean mode, utilizing carefully introduced hydrogen flow. The JetClean control is included in the MassHunter software with easy setup and operation.

The chromatographic peak shape and baseline were improved using the Jetclean source, particularly for the late eluting compounds. The calibration resulted in very comparable R² values for both sources, while the MDLs obtained at the 1.25 pg level resulted lower values using the JetClean source. The %RSDs were comparable at the higher, $2.5pg/\mu$ level. The results indicate that the JetClean source meets and exceeds the performance delivered by the standard source. Further study is ongoing to identify how the source maintenance period is extended when JetClean is applied compared to the standard source.

Reference

¹Anderson, Kim A., et al. "Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses." Journal of Chromatography A 1419 (2015): 89-98.