

Amino alcohols Analysis of ethanol amines

Application Note

Environmental

Introduction

Ethanol amines are highly polar compounds and are difficult to elute from a standard capillary column. Only with very thick film is an acceptable peak obtained. However, elution temperatures are high and bleed will cause detection problems at low level.

The Agilent CP-Sil 8 CB for Amines phase elutes the ethanol amines at nanogram level with good peak shape at lower temperatures. The temperature stability of 325 °C allows a quick bake out and a wide range of components to be analyzed.

Authors

Agilent Technologies, Inc.

Conditions

Technique	:	GC-capillary
Column	:	Agilent CP-Sil 8 CB for Amines, 0.32 mm x 30 m fused silica WCOT (df = 1.0 $\mu m)$ (Part no. CP7596)
Temperature	:	60 °C (5 min) \rightarrow 220 °C, 6 °C/min
Carrier Gas	:	H ₂ , 50 kPa (0 .5 bar, 7 psi)
Injector	:	Split, T = 270 °C
Detector	:	FID T = 300 °C
Concentration Range	:	5-10 ng per component on the column
Solvent Sample	:	methanol

Peak identification

- 1. MEA (mono-ethanol amine)
- 2. DEA (di-ethanolamine)
- 3. TEA (tri-ethanolamine)

www.agilent.com/chem

This information is subject to change without notice. © Agilent Technologies, Inc. 2011 Printed in the USA 31 October, 2011 First published prior to 11 May, 2010 A01538

Agilent Technologies