

Application News

Gas Chromatograph

Analysis of VOC in Water using Nexis GC-2030 and Headspace Sampler HS-10

No. **G293**

Volatile Organic Compound (VOC) is a collective term used to describe organic compounds that can be easily vaporized. Some well known examples include: toluene, benzene, and dichloromethane. In recent years, amid mounting concerns over health and air pollution, strict regulations concerning the emission and examination of VOCs have been implemented.

This Application News describes the analysis of volatile organic compounds (VOCs) in water using Nexis GC-2030 equipped with ECD-2010 Exceed and headspace sampler HS-10.

K. Gregory, Y. Nagao

Analytical Conditions

10 mL of mixed standard solution adjusted to 10 μ g/L of each component and 3 g of sodium chloride were enclosed in a 20 mL volume headspace vial and measured under the following conditions.

Table 2 Nexis GC-2030 Conditions

Column	: SH-Rxi-624Sil MS (0.32 mm l.D. × 60 m,
	d.f. = 1.8 μm)
Column Temp.	: 40 °C (5 min) – 4 °C /min – 80 °C (0 min)
	– 10 °C /min − 250 °C (3 min)
Carrier Gas	: He, 35 cm/sec (Constant Linear Velocity Mode)
Inj. Temp.	: 170 ℃
Inj. Method	: Split (1:10)
Purge Flow	: 3.0 mL/min
Det Temp.	: 300 °C

Instruments Used

Table 1 Instruments

GC	: Nexis GC-2030
Headspace Sampler	: HS-10
Detector	: ECD-2010 Exceed
Software	: LabSolutionsGC

*Inert Liner 1.2 mm: P/N 221-76863-73

Fig. 1 Nexis GC-2030 and HS-10

Table 3 HS-10 Condition

Oven Temp.	: 60 ℃
Sample line Temp.	: 150 ℃
Transfer line Temp.	: 160 °C
HSS Pressure	: 100 kPa
Vial shaking	: Level 3
Vial shaking Time	: 60 min
Vial shaking equilibrium Time	: 0 min
Vial heating Time	: 0 min
Vial pressurizing Time	: 1.6 min
Pressurizing equilibrium Time	: 0.1 min
Loading Time	: 0.2 min
Loading equilibrium Time	: 0.1 min
Injection Time	: 1 min
GC cycle Time	: 60 min

1: 1,1Dichloroethylene 8: 1,2-Dichloroethane
2: Dichloromethane 9: Trichloroethylene
3: trans-1,2-Dichloroethylene 10: 1,2-Dichloropropane
4: cis-1,2-Dichloroethylene 11: Bromodichloromethane
5: Chloroform 12: cis-1,3-Dichloropropene
6: 1,1,1-Trichloroethane 13: trans-1,3-Dichloropropene
7: Carbon tetrachloride 14: 1,1,2-Trichloroethane

15: Tetrachloroethylene16: Dibromochloromethane

17: Bromoform

18: p-Dichlorobenzene

Results

Fig.1 shows the chromatogram of standard solution (each component 10 μ g/L). Table 4 indicates repeatability of the peak area in five time continuous analysis. Good sensitivity and reproducibility were obtained.

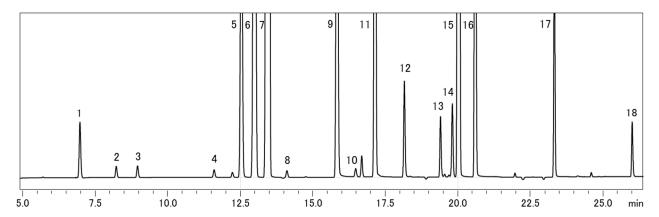


Fig. 2 Chromatogram of standard solution (each component 10 μg/L)

Table 4 Repeatability of the peak area of standard solution (n=5)

	Area	RSD(%)
1,1Dichloroethylene	51868	1.27
Dichloromethane	12379	1.74
trans-1,2-Dichloroethylene	11007	2.00
cis-1,2-Dichloroethylene	7850	2.63
Chloroform	500926	1.56
1, 1, 1-Trichloroethane	1239853	1.35
Carbon tetrachloride	2852152	1.27
1,2-Dichloroethane	7213	1.93
Trichloroethylene	725831	1.54

	Area	RSD(%)
1,1Dichloropropane	8633	2.21
Bromodichloromethane	1315361	1.86
cis-1,3-Dichloropropene	96110	2.19
trans-1,3-Dichloropropene	56857	2.34
1,1,2-Trichloroethane	75434	1.81
Tetrachloroethylene	2135446	1.59
Dibromochloromethane	701019	2.01
Bromoform	205394	1.88
p-Dichlorobenzene	53132	1.81

Note: The above stated values are reference values only. Values may vary depending on the environment and analytical procedure.

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedure.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Company names, product/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation or its affiliates, whether or not they are used with trademark symbol "TM" or "®". Third-party trademarks and trade names may be used in this publication to refer to either the entities or their products/services. Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

First Edition: Jun 2017