

SEC Analysis of a Acrylamide Copolymer

Application Note

Author

Graham Cleaver Agilent Technologies, Inc.

Introduction

This sample is a copolymer of acrylamide and dimethylaminoethyl acrylate quaternized with methyl chloride. It was necessary to maintain a low sample concentration (0.1 %) to minimize problems of shear with this high molecular weight polymer. The sample was assessed by aqueous SEC with Agilent PL aquagel-0H 40 and 60 15 μm columns. These columns were employed in order to avoid on-column shear degradation, and cover a molecular weight range from 10^4 to 10^7 .

Conditions

Samples: Sodium polyacrylate

Columns: $2 \times PL$ aquagel-OH 60 15 μ m, 300 \times 7.5 mm (p/n PL1149-6260)

+ 1 x PL aquagel-OH 40 15 μm, 300 x 7.5 mm (p/n PL1149-6240)

Eluent: 0.2 M NaNO₃ + 0.01 M NaH₂PO₄ at

pH 7

Flow Rate: 1.0 mL/min

Detection: RI

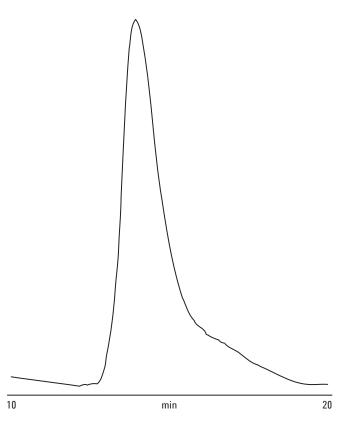


Figure 1. Raw data chromatogram of an acrylamide co-polymer

Conclusion

Size exclusion chromatography using PL aquagel-OH 40 and 60 15 μ m columns successfully analyzed a sample of acrylamide copolymer. Aqueous SEC with PL aquagel-OH columns provides information not only on the molecular weight of the polymer but also on the polydispersity and the shape of the molecular weight distribution. The excellent chemical and mechanical stability of these columns offer high performance with good repeatability and column lifetime.

www.agilent.com/chem

This information is subject to change without notice.

© Agilent Technologies, Inc. 2015

Published in UK, April 30, 2015

5991-5782EN

