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ABSTRACT
It is known that specifi c compounds are produced when 
foods spoil. For example, commonly recognized spoilage 
markers include dimethyl sulfi de for chicken and eggs, 
diacetyl for orange juice, and trimethylamine for fi sh and 
milk. As the entire headspace of the spoiled food changes 
it is possible to detect the spoilage degree by measuring 
the amount present of these markers. A fast and accurate 
technique using a mass spectrometry based chemical sen-
sor is examined for the above food products with different 
spoilage markers’ concentration levels.

Multivariate statistics were used to create models that 
detect the spoilage markers. Exploratory analysis such as 
principal component analysis (PCA) and hierarchical cluster 
analysis (HCA) indicated the viability of the data set for 
classifi cation models. Soft-independent-modeling-class-
analogy (SIMCA) and K Nearest Neighbors (KNN) were 
used to create two classifi cation models. Regression models 
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were developed using partial least squares (PLS). 
Both SIMCA and KNN provided a quick and ac-

curate identifi cation of the above foods with and wit-
hout spoilage markers. In both cases, testing sets were 
correctly classifi ed with over 95% accurate prediction 
rates. PLS models detected spoilage markers’ concen-
trations at the low to medium ppm levels. Overall, the 
positive and fast identifi cation of spoilage indicators 
demonstrates the usefulness of the MS chemical sensor 
detecting samples with close chemical composition.

INTRODUCTION
Detection of food spoilage needs to be fast and accu-
rate. Recent studies using electronic noses have shown 
this type of technology to be effective in detecting 
spoilage markers in several food products [1, 2]. Ana-
lysis times are normally on the order of a few minutes 
making this type of technology ideal for the detection 
of food spoilage.

Mass spectrometry based e-noses use robust mass 
spectrometry technology that is unaffected by moisture 
in the sample, ambient humidity, or ambient temperatu-
re fl uctuations. It is also immune to sensor poisoning. 
Ions associated with dominant sample components, 
such as acetic acid in vinegar, can be ignored and ions 
that model only the critical factors that differentiate 
samples are used. Also, ions in a suspect sample that 
are not present in a good sample can be monitored. 

In this study, chicken and eggs were spiked with 
dimethyl sulfi de [3] and the entire headspace was ana-
lyzed using a mass spectrometry based sensor. Similar 
studies were carried out with diacetyl in orange juice 
[4] and trimethylamine in milk and fi sh [5]. 

EXPERIMENTAL
Materials. Chicken, eggs, orange juice, milk and 
fl ounder fi sh were purchased at a local store. Dimethyl 
sulfi de 1000 ppm in water was obtained from Restek 
(Bellefonte, PA). 97 % diacetyl and 40% trimethyla-
mine were obtained from Sigma-Aldrich (Allentown, 
PA). Solutions of diacetyl in water at 10,000 and 2,000 
ppm were used to spike orange juice at levels specifi ed 
in Table 1. Trimethylamine solutions in water at 500 
and 5,000 ppm were used to spike milk and fi sh (Table 
1). The 1,000 ppm solution of dimethyl sulfi de was 
used to spike chicken and eggs at the levels described 
in Table 1.

Instrumentation. The chemsensor used was a Gerstel 
ChemSensor 4440 (Figure 1) that includes a headspace 
sampling unit (7694, Agilent Technologies) with a 
mass selective detector (5973, Agilent Technologies). 
This instrument integrates chemometric software from 
Infometrix (Pirouette 3.02 and Instep 2.0). The instru-
ment was used in the scan mode from 35 to 250 amu 
for the chicken and egg experiments and from 41 to 
180 amu for the milk, fi sh and orange juice. All the 
MSD runs were 1.20 min.

Figure 1. Gerstel ChemSensor 4440.

Sample preparation & headspace sampling. 5 ml ali-
quots of each liquid (orange juice, milk, and whisked 
eggs) were placed into 10 mL vials, which were crim-
ped and equilibrated for 20 minutes at 80 °C before 
headspace sampling. Since the Gerstel 4440 ChemSen-
sor does not use a column for a separation prior to the 
mass selective detector (MSD), the entire headspace 
of each sample is introduced into the MSD. 1 gram of 
solid material, previously pureed in a food processor, 
was used in the analysis of fi sh and chicken samples. 
The presence of the markers at 10 ppm was detected 
in all samples except for fi sh. 

Table 1. Concentration of spoilage markers in spiked 
food products.

Product Spoilage Marker [ppm]
Dimethyl sulfi de Trimethylamine Diacetyl

Egg 10, 50, 100

Chicken 10, 50, 100

Milk 10, 50, 100

Fish
10, 50, 100

100, 500, 1000

Orange 
juice

50, 500, 2000

10, 50, 100



RESULTS AND DISCUSSION
The fi rst step of any chemometric analysis is to exami-
ne the raw data. In this case, mass spectra of each of the 
food products were examined using the Data Analysis 
program of ChemStation software (Agilent Technolo-
gies). The presence and identifi cation of the spoilage 
markers at the lowest concentration was corroborated 
by subtracting the mass spectrum of a spiked sample 

A principal component analysis (PCA) that classifi es 
the samples according to food product indicates four 
distinctive clusters (Figure 3). The chicken and egg 
samples cluster together indicating very similar head-
space volatiles. The total variance captured with the 
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minus the spectrum of the non-spiked sample. Figure 
2 illustrates this approach for the egg samples in which 
10 ppm of dimethyl sulfi de can be detected. Similar 
analyses were performed for the other products at the 
10 ppm level. A second set of analysis (Table 1) was 
carried out for fi sh with higher marker concentrations 
since the identifi cation of trimethylamine was not 
possible at 10 ppm.

fi rst three principal components is over 92% (PC1, 
51.5%; PC2, 36.3; PC3 9.4%) and a good indication 
that the systematic variability of the data set was cap-
tured within the fi rst three PCs. 

Figure 2. Mass spectra of egg headspace. A) Egg with 10 ppm of dimethyl sulfi de; B) pure egg; C) subtraction 
of pure egg from egg with dimethyl sulfi de; D) dimethyl sulfi de standard. 
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Figure 3. Projections of the food products’ mass spectra into the space of the fi rst three principal components. 
Variance captured was PC1, 51.5%; PC2, 36.3; PC3 9.4% for a total of 92.2%.
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Figure 4 is a dendrogram obtained with hierarchical 
cluster analysis (HCA) using the Euclidean distance 
and single linkage algorithm. The orange juice and 
fi sh clusters appear to be different than the milk, chi-

cken and eggs samples. These results are in agreement 
with the PCA plot (Figure 3) in which the chicken and 
egg samples clustered together with the milk cluster 
close-by. 

As indicated by the results of the exploratory analy-
sis (PCA, HCA), enough differences present in the 
samples suggest the possibility of a good classifi cation 
model, except for the chicken and eggs. 

A cascading model (Figure 5) was used to integrate 
SIMCA and PLS models for food spoilage prediction. 
The integration of models is easily accomplished 

using InStep 2.0 software (Infometrix) available in 
the Gerstel ChemSensor. Figure 6 is a screen capture 
of this software in which the models are integrated in 
a user-friendly folder based mode. KNN models for all 
samples (not shown) resulted in similar classifi cation 
for all products.

0.00.20.40.60.81.0

Fish

Milk

Chicken and eggs

OJ

Figure 4. Cluster analysis using the Euclidean distance and single linkage method.
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Figure 6. Screen capture of InStep 2.0 software (Infometrix) that integrates models created using Pirouette 
3.02.

Cascading  multivariate models

SIMCA
classification

Egg     Milk           OJ              Chicken          Fish

    SIMCA        SIMCA        SIMCA         SIMCA         SIMCA

    marker        marker        marker         marker          marker

Present      Not       Present    Not           Present   Not           Present   Not           Present    Not

PLS      PLS             PLS     PLS              PLS

Figure 5. Diagram of cascading model integrating classifi cation (SIMCA) and regression (PLS) algorithms.
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Figure 7. Projections of the orange juice mass spectra into the space of the fi rst two principal components.  

The model created was used to predict the sample 
type fi rst, then the presence of a marker and lastly the 
amount of marker present. The models predicting the 
presence of markers were examined using PCA scores. 
As seen in Figure 7, PCA scores for the orange juice 

samples indicate that the fi rst PC (horizontal axis in 
Figure 7) describes the difference between samples 
containing marker (positive scores on the fi rst PC) and 
no marker (negative scores).
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The model (Figure 5) was validated using a testing 
set. Results of these unknowns are shown in Table 2. 
The 1st classifi cation into 5 product categories was 
accurate, even air blank samples were not classifi ed, 
as expected, since they were not part of the model. The 

second classifi cation of food products into spoiled or 
not was 100% accurate. Regression models predicted 
the amount of marker more accurately for high mar-
ker concentrations in the 100 ppm range for all food 
products with the exception of fi sh. 
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Table 2. Prediction of testing set using cascaded model.

CONCLUSIONS
These preliminary results indicate the possibility of 
using a mass-spectra based chemical sensor to predict 
the level of spoilage in foods. More research with 
more markers and more levels is necessary. Also, the 
possibility of using the Chemical sensor in the single 
ion-monitoring mode (SIM) could improve the sensiti-
vity below 10 ppm. Since off-fl avors are normally pre-
sent at low concentrations, other sample introduction 
techniques such as stir bar sorptive extraction (SBSE) 
and solid-phase microextraction (SPME) need to be 
investigated in future studies.
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Sample SIMCA 1st SIMCA 2nd PLS

air blank unidentifi ed na na

milk-50 ppm milk TMA-positive 46.944

milk no-marker milk TMA-negative na

air blank unidentifi ed na na

OJ-10 ppm OJ Diacetyl-positive 8.075

OJ-no-marker OJ Diacetyl-negative na

OJ-100 ppm OJ Diacetyl-positive 104.585

egg- no-marker Egg DMS-negative na

egg-100 ppm Egg DMS-positive 102.599

egg-10 ppm Egg DMS-positive 7.601

chicken-100 ppm Chicken DMS-positive 102.068

chicken- no marker Chicken DMS-negative na

Fish-1000 ppm Fish TMA-positive 1485.307

Fish-no marker Fish TMA-negative na

Fish-500 ppm Fish TMA-positive 690.812

air blank unidentifi ed na na
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