

Determination of Volatile Organic Compounds in Soil and Sediment by Purge and Trap GC/MS

Method HJ 605-2011

Author

Youjuan Zhang Agilent Technologies (Shanghai) Co. Ltd. Shanghai 200131 P. R. China

Abstract

Method HJ 605-2011 was used to determine the concentration of volatile organic compounds (VOCs) in soil and sediment. This Application Note presents a method for their analysis using an Agilent 7890B GC, an Agilent 5977B GC/MSD, and a Teledyne Tekmar Atomx XYZ purge and trap (P&T) sampler.

Introduction

With the acceleration of urbanization and industrialization, the pollution of VOCs in soil is becoming more and more serious. Volatile organic pollutants in soil affect the growth of plants and animals, thus harming human health. Soil organic pollutants easily enter the atmosphere and water through wind and water power, resulting in air and water pollution. Currently, most countries have corresponding detection standards for VOCs in soil, such as EPA 8260C in the United States. China has also issued corresponding detection standards, such as HJ 605-2011 (Determination of Volatile Organic Compounds in Soil and Sediment by Purge and Trap Gas Chromatography/Mass Spectrometry)¹ and HJ642-2013 (Determination of Volatile Organic Compounds in Soil and Sediment by Headspace Gas Chromatography/Mass Spectrometry).

This Application Note demonstrates that an 7890B GC combined with a 5977 GC/MSD with a purge and trap (P&T) sampler can easily achieve the performance specification for 65 VOCs in method HJ 605-2011. The calibration curves determined for those target compounds were found to be within method requirements. The correlation coefficients were also well above 0.993. A concentration RSD of 0.9 to 12.2 % was determined for each compound. Limits of detection (LODs) were 0.2 to 1.6 µg/L.

Experimental

Tables 1 and 2 describe the P&T/GC/MSD systems used for these experiments.

Sample preparation

The stock solution of 65 VOCs at a concentration of 10 μ g/mL was prepared in methanol. An internal standard (IS) mixture of fluorobenzene, chlorobenzene-d_s, and 1,4-dichlorobenzene-d₄ was diluted with methanol at 25 μ g/mL. A surrogate mixture of dibromofluoromethane, toluene-d₈, and 4-bromofluorobenzene at 10 μ g/mL was prepared in methanol.

The 10 μ g/mL stock solution and 10 μ g/mL surrogate solution were diluted to create 5, 20, 50, 100, and 200 μ g/L standard solutions. Five 40-mL vials were prepared at each calibration level by filling each vial with 5 mL of standard solutions and 10 μ L of internal standard, corresponding to an internal standard concentration of 50 μ g/L. Finally, 15 mL of ultrapure water was added to each vial. **Table 1.** Teledyne Tekmar Atomx XYZ P&T Samplerconditions. Method type: soil. Teklink method forthe Atomx with a 5-mL purge vessel using trapnumber 9.

Parameter	Value				
Standby					
Valve oven temperature	140 °C				
Transfer line temperature	140 °C				
Sample mount temperature	90 °C				
Water heater temperature	90 °C				
Sample cup temperature	20 °C				
Soil valve temperature	100 °C				
Standby flow	10 mL/min				
Purge ready temperature	40 °C				
Purge					
Water volume	0 mL				
Purge mix speed	Medium				
Purge time	11 minutes				
Purge flow	40 mL/min				
Purge temperature	20 °C				
MCS purge temperature	20 °C				
Dry purge time	2 minutes				
Dry purge flow	100 mL/min				
Desorb					
Water needle rinse volume	7 mL				
Sweep needle time	0.25 minutes				
Desorb preheat temperature	245 °C				
GC start signal	Begin desorb				
Desorb time	2 min				
Drain flow	300 mL/min				
Desorb temperature	250 °C				
Bake					
Bake time	2 minutes				
Bake flow	200 mL/min				
Bake temperature	280 °C				
MCS bake temperature	180 °C				

Results and discussion

The MSD data were collected in scan mode and analyzed by Agilent MassHunter software. Figure 1 shows a typical chromatogram of 65 target compounds at a concentration of 50 µg/L. Peak shape is very important for integration, quantitation, and reproducibility. The early eluting compounds should receive particular attention. These compounds are extremely volatile, and coelute with water and methanol. Note that the amount of methanol in the working solution may affect the peak shape and response of bromomethane and chloroethane. To obtain a stable and reliable response, the volume of methanol in each working solution was suggested to be fixed.

Table 2. Instrument conditions. Method type: soil.

7890B GC						
Inlet	200 °C, split 30:1					
Liner	Ultra Inert inlet liner, straight, 2 mm id (p/n 5190-6168)					
Column	Agilent J&W DB-Select 624 Ultra Inert for 467, 30 m × 0.25 mm, 1.4 µm (p/n 122-1334UI)					
Carrier	Helium, 1.5 mL/min, constant flow					
Oven	38 °C (1.8 minutes), then 10 °C/min to 120 °C, then 15 °C/min to 240 °C (2 minutes)					
Transfer line temperature	280 °C					
	5977B GC/MSD					
Parameter	Value					
lonization type	El					
Source temperature	230 °C					
Quad temperature	150 °C					
Drawout plate	6 mm					
Tune file	Atune.u					
Acquisition type	Scan					
Solvent delay	0 minutes					
Gain factor	1					

The calibration curve was developed based on the ISTD method for five concentration levels from 5 to 200 μ g/L. The 6-mm drawout lens was used for best linearity for all compounds.

Table 3 shows the R^2 values for the five-level calibration. Excellent linearity is shown for all compounds, with an R^2 range of 0.993 to 0.9999.

Repeatability (n = 6) was tested at 5 and 20 μ g/L levels. The concentration %RSD was 0.9 to 12.2 %. For most compounds, the %RSD was well below 5 %.

Table 3. R^2 values for 65 VOCs in the calibration standard over the 5 to 200 μ g/L range of the	nis study.
--	------------

Number	Name	RT	m/z	CF R ²	Nui
Istd1	Fluorobenzene	6.017	96		32
1	Dichlorodifluoromethane	1.464	85	0.9998	33
2	Chloromethane	1.638	50	0.9998	34
3	Chloroethene	1.754	62	0.9998	35
4	Bromomethane	2.065	94	0.9999	36
5	Chloroethane	2.162	64	0.9989	37
6	Trichloromonofluoromethane	2.429	101	0.9999	38
7	1,1-Dichloroethene	2.962	96	0.9999	39
8	Acetone	3.069	58	0.9930	40
9	lodomethane	3.107	142	0.9961	42
10	Carbon disulfide	3.165	76	0.9999	43
11	Methylene chloride	3.451	84	0.9999	44
12	trans-1,2-Dichloroethene	3.741	96	0.9999	lst
13	1,1-Dichloroethane	4.165	63	0.9998	45
14	cis-1,2-Dichloroethene	4.776	95.9	0.9995	Su
15	2,2-Dichloropropane	4.776	77	0.9997	46
16	2-Butanone	4.834	72	0.9971	47
17	Bromochloromethane	5.024	130	0.9995	48
18	Chloroform	5.117	83	0.9999	49
Surr1	Dibromofluoromethane	5.281	111	0.9995	50
19	1,1,1-Trichloroethane	5.316	99	0.9998	51
20	1,1-Dichloropropene	5.496	75	0.9997	52
21	Carbon tetrachloride	5.499	119	0.9996	53
22	Benzene	5.718	78	0.9999	54
23	1,2-Dichloroethane	5.724	62	0.9997	55
24	Trichloroethylene	6.441	132	0.9998	56
25	1,2-Dichloropropane	6.683	63	0.9999	57
26	Dibromomethane	6.808	174	0.9993	58
27	Bromodichloromethane	6.998	83	0.9996	59
28	4-Methyl-2-pentanone	7.866	100	0.9998	60
Istd2	Chlorobenzene-d ₅	9.685	117		61
Surr2	Toluene-d ₈	7.869	98	0.9995	62
29	Toluene	7.949	92	0.9993	63
30	1,1,2-Trichloroethane	8.438	83	0.9991	64
31	Tetrachloroethylene	8.634	166	0.9985	65

Number	Name	RT	m/z	CF R ²
32	1,3-Dichloropropane	8.644	76	0.9987
33	2-Hexanone	8.789	58	0.9974
34	Dibromochloromethane	8.924	129	0.9983
35	1,2-Dibromoethane	9.065	109	0.9985
36	Chlorobenzene	9.724	112	0.9992
37	1,1,1,2-Tetrachloroethane	9.837	133	0.9990
38	1,1,2-Trichloropropane	9.888	63	0.9993
39	Ethylbenzene	9.892	91	0.9997
40,41	m,p-Xylene	10.049	106	0.9993
42	o-Xylene	10.567	91.1	0.9991
43	Styrene	10.58	104	0.9989
44	Bromoform	10.782	173	0.9959
lstd3	1,4-Dichlorobenzene-d ₄	12.608	152	
45	Isopropylbenzene	11.046	105	0.9996
Surr3	4-Bromofluorobenzene	11.22	174	0.9989
46	Bromobenzene	11.39	156	0.9988
47	1,1,2,2-Tetrachloroethane	11.396	83	0.9965
48	1,2,3-Trichloropropane	11.438	75	0.9986
49	n-Propylbenzene	11.56	91	0.9998
50	2-Chlorotoluene	11.644	91	0.9996
51	4-Chlorotoluene	11.779	91.1	0.9994
52	1,3,5-Trimethylbenzene	11.782	105	0.9995
53	tert-Butylbenzene	12.168	119	0.9994
54	1,2,4-Trimethylbenzene	12.226	105	0.9998
55	sec-Butylbenzene	12.432	105	0.9999
56	1,3-Dichlorobenzene	12.535	146	0.9995
57	p-lsopropyltoluene	12.609	119	0.9998
58	1,4-Dichlorobenzene	12.641	146	0.9996
59	1,2-Dichlorobenzene	13.062	146	0.9991
60	n-Butylbenzene	13.081	91	0.9998
61	1,2-Dibromo-3-chloropropane	13.93	157	0.9954
62	1,2,4-Trichlorobenzene	14.856	182	0.9984
63	Hexachlorobutadiene	15.065	224.8	0.9982
64	Naphthalene	15.113	128	0.9989
65	1,2,3-Trichlorobenzene	15.374	182	0.9987
	•			

Table 4 shows that all compounds met the HJ 605 method criteria of less than 20 % RSD.

Table 4 also shows the LOD and limit of quantitation (LOQ) study for 65 compounds. The LOD and LOQ values were calculated from the standard deviation of six replicate runs of the lowest calibration standard. All LODs were below 1 μ g/L except for three compounds, which had LODs below 2 μ g/L.

Method recoveries were measured by analyzing unspiked and spiked soil samples. Standards containing 65 target compounds were spiked into the real soil sample at 50 μ g/L. Table 4 shows the results, illustrating that the recovery of 50 μ g/L ranged from 76.1 to 135.6 %.

Table 4. RSD, MDL, and recovery percentages for VOCs.

	RSD	RSD (n = 6)			
Name	5 µg/L	20 µg/L	LOD	LOQ	Recovery %
Dichlorodifluoromethane	3.3	2.7	0.5	1.6	88.9
Chloromethane	3.8	3	0.6	1.8	86.7
Chloroethene	2.3	3	0.3	1.1	98.7
Bromomethane	5	7.1	0.7	2.5	108.7
Chloroethane	12.2	4.2	1.6	5.4	83.3
Trichloromonofluoromethane	2.5	2.4	0.4	1.2	98.0
1,1-Dichloroethene	3.9	2.3	0.6	1.9	98.0
Acetone	6.8	6.8	1.0	3.5	135.6
Iodomethane	1	1.5	0.2	0.5	76.1
Carbon disulfide	2.7	2.5	0.4	1.3	94.0
Methylene chloride	1.7	2.5	0.2	0.8	105.0
trans-1,2-Dichloroethene	2.7	2.6	0.4	1.3	95.9
1,1-Dichloroethane	2.5	2.3	0.4	1.3	98.9
2,2-Dichloropropane	2.3	2	0.3	1.1	97.9
cis-1,2-Dichloroethene	3.1	4	0.4	1.5	126.9
2-Butanone	5.9	5.6	0.9	3.1	119.6
Bromochloromethane	2.1	1.7	0.3	1.0	100.3
Chloroform	2.7	4.2	0.4	1.4	101.2
Dibromofluoromethane	2.4	2.5	0.3	1.2	99.2
,1,1-Trichloroethane	2.6	2.4	0.4	1.3	97.1
,1-Dichloropropene	1.9	1.7	0.3	1.0	95.5
Carbon tetrachloride	3.3	2.1	0.5	1.6	92.1
Benzene	2.3	2.6	0.3	1.1	98.7
1,2-Dichloroethane	1	2	0.2	0.5	98.0
Trichloroethylene	2	2.5	0.3	1.0	99.5
1,2-Dichloropropane	2.4	2.6	0.4	1.2	102.1
Dibromomethane	2.1	0.9	0.3	1.0	97.0
Bromodichloromethane	2.1	2.2	0.3	1.0	98.6
4-Methyl-2-pentanone	3.3	2.4	0.5	1.6	96.4
Toluene-d ₈	1.9	2	0.3	0.9	99.1
Toluene	2.7	2.2	0.4	1.3	101.3
1,1,2-Trichloroethane	3.1	1.5	0.5	1.6	99.5
Tetrachloroethylene	3.1	2.3	0.5	1.5	98.9

	RSD (n = 6)					
Name	5 µg/L	5 µg/L 20 µg/L		LOQ	Recovery %	
1,3-Dichloropropane	2.9	2.5	0.4	1.5	99.1	
Dibromochloromethane	9.1	3.8	1.5	5.0	106.1	
1,2-Dibromoethane	1.7	1.8	0.3	0.9	97.7	
2-Hexanone	2.4	1.8	0.4	1.2	95.7	
Chlorobenzene	1.7	2	0.3	0.9	100.2	
1,1,1,2-Tetrachloroethane	2.4	2.3	0.4	1.2	101.6	
1,1,2-Trichloropropane	1.9	2.2	0.3	1.0	100.8	
Ethylbenzene	2.2	1.6	0.3	1.1	101.9	
<i>m,p</i> -Xylene	2.1	2.3	0.3	1.0	98.7	
o-Xylene	2.1	2.1	0.3	1.0	96.5	
Styrene	2.4	2	0.4	1.2	89.7	
Bromoform	2.7	2.5	0.4	1.4	90.8	
lsopropylbenzene	4.3	4.5	0.6	2.2	102.6	
4-Bromofluorobenzene	4.5	4	0.7	2.2	101.1	
Bromobenzene	3.9	4.3	0.6	1.9	100.2	
1,1,2,2-Tetrachloroethane	3.5	4.4	0.5	1.8	90.7	
1,2,3-Trichloropropane	7.5	4.7	1.1	3.7	95.1	
n-Propylbenzene	4.2	4.2	0.6	2.1	103.8	
2-Chlorotoluene	3.6	4.3	0.5	1.8	103.1	
4-Chlorotoluene	3.9	4	0.6	1.9	102.2	
1,3,5-Trimethylbenzene	3.8	3.8	0.6	1.9	103.6	
tert-Butylbenzene	3.7	4.5	0.5	1.8	98.9	
1,2,4-Trimethylbenzene	4.2	3.9	0.6	2.1	104.6	
sec-Butylbenzene	4.1	3.9	0.6	2.0	100.5	
1,3-Dichlorobenzene	4.1	4	0.6	2.0	103.0	
p-Isopropyltoluene	4.1	3.8	0.6	2.0	99.2	
1,4-Dichlorobenzene	4.2	3.8	0.6	2.1	102.8	
1,2-Dichlorobenzene	4.5	3.9	0.7	2.2	95.0	
n-Butylbenzene	4.4	3.9	0.6	2.1	99.2	
1,2-Dibromo-3-chloropropane	5.7	4.2	0.9	3.0	86.6	
1,2,4-Trichlorobenzene	4.2	4.4	0.6	2.1	87.2	
Hexachlorobutadiene	4.4	4	0.7	2.2	80.5	
Naphthalene	5.4	5.7	0.8	2.8	78.3	
1,2,3-Trichlorobenzene	4.1	4.8	0.6	2.0	83.7	

Conclusion

This Application Note demonstrates the capability of the 7890B GC, 5977B GC/MSD, and the Atomx XYZ P&T sampler system to process VOCs in soil and sediment following the HJ 605-2011 method. Correlation coefficients were found to be 0.993 or better. The concentration RSD was 0.9 to 12.2 %. The LOD was 0.2 to 1.6 μ g/L, and for most compounds, the LOD was less than 1 μ g/L. The recovery was 76.1 to 135.6 %.

Reference

 Soil and Sediment-Determination of Volatile Organic Compounds-Purge and Trap Gas Chromatography/ Mass Spectrometry Method. HJ 605-2011.

www.agilent.com/chem

This information is subject to change without notice.

© Agilent Technologies, Inc. 2018 Printed in the USA, December 12, 2018 5994-0489EN

