# Determination of Hydrocarbon Components in Petroleum Naphthas

LECO Corporation; Saint Joseph, Michigan USA

Key Words: GC-TOFMS, Petrochemical, Naphtha, Deconvolution, Retention Index

## 1. Introduction

The determination of hydrocarbon components in petroleum naphthas is of great importance to the Petrochemical industry. A knowledge of the composition in naphthas, reformates, or alkylates is useful in characterization of crude oils, reforming process control, and product quality assessment, as well as for regulatory purposes. Detailed hydrocarbon composition is also used as input in the mathematical modeling of refinery processes. A number of ASTM chromatographic methods have been developed to address these issues. Usually these methods require strict adherence to the parameters specified in order to avoid interferences from coelutions or analyte identification issues, thus resulting in methods that require long analysis times.

Mass spectrometers are usually used as a confirmation tool only, perhaps because a mass spectrometer is perceived to require a higher degree of analytical skill. In addition, most mass spectrometers also require good chromatographic separation to avoid misinterpretation of the spectrum generated. A typical mass spectrometer acquires data at a rate of 1 to 5 spectra per second. This presents a problem when one tries to enhance the speed of the chromatographic methods and narrow or coeluting peaks are obtained. The LECO Pegasus<sup>®</sup> GC-TOFMS offers several advantages over other types of GC-MS systems, one of which is that it provides fast data acquisition rates of up to 500 spectra/sec. This allows accurate definition of the narrowest GC peaks. In addition, the ion ratios for a spectrum in a TOF system do not change across the chromatographic peak; this means that each spectrum across the peak gives an accurate representation of the ion ratios for that particular analyte. Or in other words, the spectra obtained are not skewed. This is known as "spectral continuity".

Fast data acquisition rates, as well as spectral continuity across peaks, allow the development of algorithms that can be used to deconvolute complex chromatographic coelutions and extract the spectrum of each analyte. The deconvoluted spectra can then be used for library identification. Thus, it is possible to analyze complex samples such as naphthas using faster chromatographic methods without losing analytical information.

### 2. Experimental Conditions

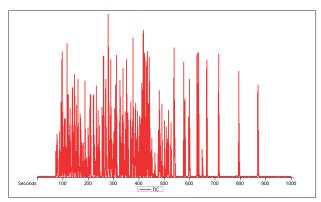
A PIANO Standard and two naphtha process samples were analyzed using the LECO Pegasus GC-TOFMS system in order to characterize and quantify the analytes present in these samples. Method ASTM D5134 was implemented and modified to analyze these samples using faster chromatographic conditions without losing analytical resolution. Method ASTM D5134 typically requires an analysis time of 122.5 minutes. By using a shorter column, acquiring data at 25 spectra per second, and implementing a faster GC oven temperature program the analysis time was reduced to 25 minutes—a 5-fold reduction in analysis time.

GC-Parameters—Agilent<sup>®</sup> 6890 (EPC Mode) Column:

Supelco® SPB-1; 30 m x 0.25 mm x 0.25  $\mu$ m filmInjector Temperature:225°CSplit Ratio:400:1Oven Program:

40°C for 2 minutes to 250°C at 10°C/minute, hold 2 minutes Flow Rate:

Constant flow at 1.8 ml/minute


| GC-TOFMS (EI Mode) |
|--------------------|
| 45 to 450 amu      |
| 25 spectra/seconds |
| 200°C              |
| 25 minutes         |
|                    |

### 3. Results and Discussion

Method ASTM D5134 specifies that quantifications be determined by area percentage calculations along with retention index calculations. When a mass spectrometer is used as the detector, the areas for each peak will be determined by the ionization efficiency of the analytes. In other words, even if two peaks have the same concentration, their areas may not be the same due to differences in their ionization efficiencies. This is why response factors are needed for each analyte present in the sample. Furthermore, it becomes very difficult to obtain accurate areas of closely eluting or coeluting peaks, since peaks will have area contribution from more than one component. This is why method D5134 uses a long column with a very slow temperature program. Most of these problems can be resolved by the Pegasus hardware/software without resorting to long columns or extended run times, as will be demonstrated in the following figures and tables.

Science and Chemical Analysis Solutions

Life



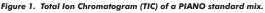



Figure 1 shows the Total Ion Chromatogram (TIC) for a PIANO standard with known composition (139 components). A number of peaks in this sample were not fully resolved chromatographically. Figure 2 illustrates one coelution. Most mass spectrometers cannot deconvolute such a close coelution mainly because they have low acquisition rates.

A Time-of-Flight (TOF) mass spectrometer, on the other hand, allows fast acquisition rates. The LECO Pegasus can acquire data at speeds up to 500 full mass spectra per second. In addition, the ion ratios do not change across a peak; meaning that the spectrum across the peak gives an accurate representation of the ion ratios for that particular analyte.

Fast data acquisition rates, combined with spectral continuity across peaks, has allowed the development of algorithms that can be used to locate peaks (Peak Find) and deconvolute complex chromatographic coelutions to extract the spectrum of each analyte for easy library identification. This is illustrated in Figure 2 where the TIC only shows one peak, but the Peak Find algorithm finds two peaks and deconvolutes them to obtain library searchable spectra. By plotting "unique" masses, (m/z 91 and 69) it is evident that there are two peaks.

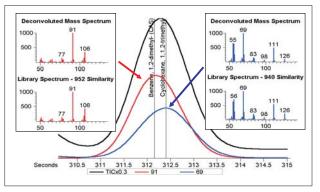



Figure 2. Automatic Peak Find and deconvolution of coeluting peaks in a PIANO standard mix.

One of the most difficult questions to answer is "What is the area contributed by each peak in the coelution"? The Pegasus software can answer this question by computing the area based on the spectral continuity of the peak. Since the ion ratios remain constant across a peak, it is possible to calculate accurate areas as illustrated in Figure 3.

This algorithm even works when coeluting peaks contain shared masses. This is illustrated in Figure 4 where m/z 134 is shared by the two coeluting analytes. The Deconvolution algorithm correctly calculates the contribution of the shared masses for each spectrum as shown in Figure 5.

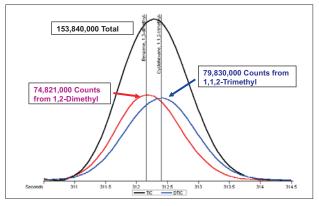



Figure 3. Calculated areas for coeluting peaks.

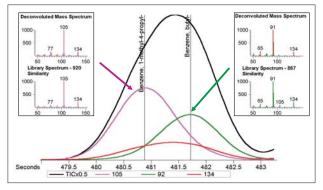



Figure 4. Deconvolution of coeluting peaks with shared masses (m/z 65, 91 and 134 are shared).

By specifying a plot of mass 134, and deconvoluted mass 134 (d134), one can visually see the contribution of mass 134 to each of the peaks in the coelution. In the same manner, by specifying in the quantification masses a DTIC, one can obtain the area contribution of each coeluting peak. This same principle can be applied to the entire chromatogram so that total areas can be calculated for all peaks and thus obtain an area percentage calculation. Table 1 is a partial list of area percentage for the PIANO standard. Once an area percentage has been calculated, the results can be corrected by multiplying by a response factor to obtain weight percentage results.

Table 1. Partial Table of Area percentage and Weight percentage for PIANO Standard.

| Analyte                  | Туре         | RT (sec) | Area        | Area % | Weight % |
|--------------------------|--------------|----------|-------------|--------|----------|
| 1-Butene, 3-methyl-      | Olefin       | 73.92    | 14,285,000  | 0.152  | 0.355    |
| Butane, 2-methyl- (CAS)  | Iso-Paraffin | 75.52    | 8,351,200   | 0.089  | 0.414    |
| 1-Pentene                | Olefin       | 76.96    | 23,348,000  | 0.249  | 0.755    |
| 1-Butene, 2-methyl-      | Olefin       | 77.68    | 14,241,000  | 0.152  | 0.264    |
| Pentane (CAS)            | Paraffin     | 78.28    | 10,627,000  | 0.113  | 1.785    |
| 1,3-Butadiene, 2-methyl- | Olefin       | 78.88    | 17,310,000  | 0.184  | 0.437    |
| 2-Pentene, (Z)-          | Olefin       | 79.16    | 13,372,000  | 0.142  | 0.362    |
| 2-Pentene, (E)-          | Olefin       | 80.20    | 16,757,000  | 0.178  | 0.330    |
| 1-Pentene, 4-methyl-     | Olefin       | 87.28    | 18,750,000  | 0.200  | 0.628    |
| Cyclopentane             | Naphthene    | 89.00    | 35,683,000  | 0.380  | 1.029    |
| Pentane, 2-methyl- (CAS) | Iso-Paraffin | 90.08    | 13,858,000  | 0.147  | 0.620    |
| Pentane, 3-methyl-       | Iso-Paraffin | 93.60    | 58,437,000  | 0.622  | 1.018    |
| 1-Hexene                 | Olefin       | 95.04    | 48,970,000  | 0.521  | 1.288    |
| Hexane                   | Paraffin     | 98.28    | 117,060,000 | 1.246  | 1.809    |
| 2-Hexene, (E)-           | Olefin       | 99.72    | 22,573,000  | 0.240  | 0.316    |
| 2-Pentene, 2-methyl-     | Olefin       | 100.44   | 34,964,000  | 0.372  | 0.620    |
| 2-Hexene, (Z)-           | Olefin       | 102.80   | 41,736,000  | 0.444  | 0.708    |
| Pentane, 2,2-dimethyl-   | Iso-Paraffin | 106.68   | 24,553,000  | 0.261  | 0.335    |
| Cyclopentane, methyl-    | Naphthene    | 107.68   | 50,922,000  | 0.542  | 0.687    |
| Pentane, 2,4-dimethyl-   | Iso-Paraffin | 109.00   | 35,760,000  | 0.381  | 0.699    |
| Butane, 2,2,3-trimethyl- | Iso-Paraffin | 111.36   | 54,777,000  | 0.583  | 0.742    |
| Benzene                  | Aromatic     | 117.68   | 131,640,000 | 1.401  | 1.645    |



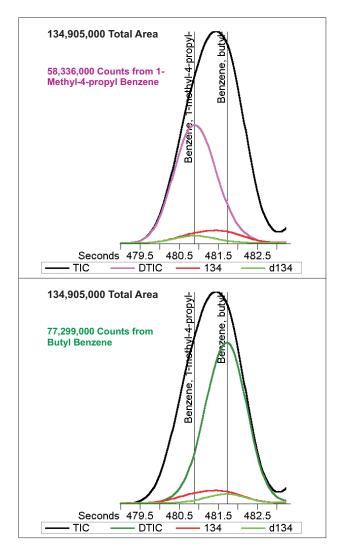



Figure 5. Calculated areas for coeluting peaks with shared masses.

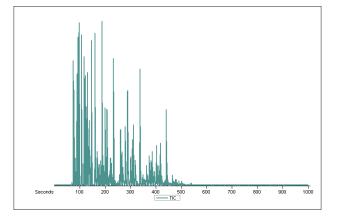



Figure 6. Chromatogram of a Naphtha Distillation Column Load process sample.

Figure 6 shows the chromatogram of a Naphtha Distillation Column Load process sample. This sample was analyzed using the conditions listed earlier and processed automatically at a signal-to-noise (S/N) level of 200:1. This means that the Processing algorithm will ignore components below a S/N level of 200. The Peak Find and Deconvolution algorithms identified 170 components. Area percentage and Retention Index were also calculated. Table 2 shows the results for this sample.

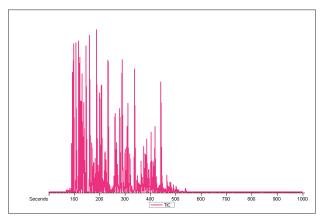



Figure 7. Chromatogram of a Naphtha Distillation Column Bottom process sample.

Figure 7 shows the chromatogram of a Naphtha Distillation Column Bottom process sample. This sample was also processed at a S/N level of 200:1. The Peak Find and Deconvolution algorithms identified a total of 152 components.

#### Table 2. Partial Table of Area percentage and Retention Index for Naphtha Distillation Column Load Process Sample.

| Peak # | Name                                        | R.T. (seconds) | Retention Index | Area      | Area % |
|--------|---------------------------------------------|----------------|-----------------|-----------|--------|
| 1      | 1-Butanol, 2-methyl-, (S)-                  | 70.866         | 552.68          | 3147500   | 0.137  |
| 2      | iso-Pentane                                 | 70.966         | 552.89          | 23682000  | 1.032  |
| 3      | 2-Buten-1-ol                                | 73.646         | 558.47          | 17967000  | 0.783  |
| 4      | Butane, 2,2-dimethyl-                       | 78.786         | 569.17          | 3758400   | 0.164  |
| 5      | Cyclopropane, methylmethylene-              | 81.886         | 575.62          | 246320    | 0.011  |
| 6      | Cyclopentane                                | 84.126         | 580.29          | 5596700   | 0.244  |
| 7      | 2,2-Dimethylbutane                          | 85.126         | 582.37          | 27361000  | 1.193  |
| 8      | 3-Methylpentane                             | 88.546         | 589.49          | 37074000  | 1.616  |
| 9      | Hexane                                      | 93.126         | 599.02          | 55229000  | 2.408  |
| 10     | 2,2-Dimethylpentane                         | 101.266        | 615.96          | 2930900   | 0.128  |
| 11     | Methylcyclopentane                          | 102.246        | 618             | 32080000  | 1.399  |
| 12     | 2,4-Dimethylpentane                         | 103.506        | 620.63          | 4841800   | 0.211  |
| 13     | Benzene                                     | 112.006        | 638.32          | 27612000  | 1.204  |
| 14     | 3,3-Dimethylpentane                         | 114.586        | 643.69          | 2926700   | 0.128  |
| 15     | Cyclohexane                                 | 116.446        | 647.56          | 25110000  | 1.095  |
| 16     | 2-Methylhexane                              | 120.886        | 656.8           | 21948000  | 0.957  |
| 17     | 2,3-Dimethylpentane                         | 121.866        | 658.84          | 19105000  | 0.833  |
| 18     | 1,1-Dimethylcyclopentane                    | 123.526        | 662.3           | 4229800   | 0.184  |
| 19     | 3-Methylhexane                              | 125.746        | 666.92          | 41389000  | 1.804  |
| 20     | cis-1,3-Dimethylcyclopentane                | 129.606        | 674.96          | 10183000  | 0.444  |
| 20     | trans-1,3-Dimethylcyclopentane              | 131.246        | 678.37          | 10283000  | 0.448  |
| 22     | 3-Ethylpentane                              | 131.926        | 679.79          | 3160400   | 0.138  |
| 23     | trans-1,2-Dimethylcyclopentane              | 132.886        | 681.78          | 20449000  | 0.891  |
| 24     | Pentane, 2,2,4-trimethyl-                   | 133.906        | 683.91          | 2372000   | 0.103  |
| 25     | Heptane                                     | 141.006        | 698.69          | 74839000  | 3.263  |
| 26     | Cyclopentane, 1,2-dimethyl-, cis-           | 154.586        | 714.94          | 6330000   | 0.276  |
| 20     | Methylcyclohexane                           | 154.866        | 715.27          | 58171000  | 2.536  |
| 28     | 1-Hexene, 3,5-dimethyl-                     | 157.246        | 718.01          | 6043500   | 0.263  |
| 20     | Ethylcyclopentane                           | 163.866        | 725.65          | 11722000  | 0.511  |
| 30     | 2,5-Dimethylhexane                          | 165.126        | 727.1           | 5667100   | 0.247  |
| 31     | Hexane, 2,4-dimethyl-                       | 166.626        | 728.84          | 8155500   | 0.356  |
| 32     | Cyclopentane, 1,2,4-trimethyl-, (1à,2á,4à)- | 170.966        | 733.84          | 9370900   | 0.409  |
| 33     | Hexane, 3,3-dimethyl-                       | 172.206        | 735.27          | 1168000   | 0.051  |
| 34     | Cyclopentane, 1,2,3-trimethyl-, (1à,2à,3á)- | 176.986        | 740.79          | 10708000  | 0.467  |
| 35     | Pentane, 2,3,4-trimethyl-                   | 179.446        | 743.63          | 2935600   | 0.128  |
| 36     | Toluene                                     | 182.386        | 747.02          | 107090000 | 4.668  |
| 37     | 2,3-Dimethylhexane                          | 189.266        | 754.96          | 8621700   | 0.376  |
| 38     | Pentane, 3-ethyl-2-methyl-                  | 190.126        | 755.95          | 6188100   | 0.270  |
| 39     | 2-Methylheptane                             | 194.826        | 761.38          | 38509000  | 1.679  |
| 40     | 4-Methylheptane                             | 196.126        | 762.88          | 14584000  | 0.636  |
| 41     | Hexane, 3,4-dimethyl-                       | 197.166        | 764.08          | 5570900   | 0.243  |
| 42     | Heptane, 3-methylene-                       | 199.426        | 766.68          | 596310    | 0.245  |
| 43     | 3-Methylheptane                             | 201.666        | 769.27          | 33775000  | 1.472  |
| 44     | cis-1,4-Dimethylcyclohexane                 | 201.000        | 770.01          | 23708000  | 1.034  |
| 44     | Unknown                                     | 202.666        | 770.42          | 5762000   | 0.251  |
| 45     | trans-1,4-Dimethylcyclohexane               | 202.888        | 772.09          | 9522200   | 0.231  |
| 40     | Cyclohexane, 1-ethyl-2-methyl-, cis-        | 204.106        | 772.09          | 3828200   | 0.415  |
| 47     | Cyclopentane, 1-ethyl-2-methyl-, cis-       | 212.686        | 781.99          | 8080300   | 0.352  |
| 48     | 1-Ethyl-1-methylcyclopentane                | 212.080        | 781.99          | 19949000  | 0.352  |
| 49     | trans-1,2-Dimethylcyclohexane               | 216.006        | 785.82          | 19949000  | 0.870  |



| Peak #   | Name                                        | R.T. (seconds) | Retention Index | Area          | Area % |
|----------|---------------------------------------------|----------------|-----------------|---------------|--------|
| 1        | iso-Pentane                                 | 71.281         | 553.55          | 538070.000    | 0.023  |
| 2        | Butane, 2-methyl-                           | 73.961         | 559.13          | 469420.000    | 0.020  |
| 3        | 4-Methyl-1-pentene                          | 82.201         | 576.28          | 507090.000    | 0.021  |
| 4        | 2,2-Dimethylbutane                          | 85.481         | 583.11          | 11105000.000  | 0.468  |
| 5        | 3-Methylpentane                             | 88.881         | 590.18          | 34694000.000  | 1.461  |
| 6        | Hexane                                      | 93.461         | 599.72          | 79313000.000  | 3.340  |
| 7        | 2,2-Dimethylpentane                         | 101.621        | 616.7           | 2818300.000   | 0.119  |
| 8        | Methylcyclopentane                          | 102.581        | 618.7           | 50061000.000  | 2.108  |
| 9        | 2,4-Dimethylpentane                         | 103.901        | 621.45          | 6966300.000   | 0.293  |
| 10       | 2,2,3-Trimethylbutane                       | 106.221        | 626.28          | 514300.000    | 0.022  |
| 11       | Benzene                                     | 112.321        | 638.98          | 44367000.000  | 1.869  |
| 12       | 3,3-Dimethylpentane                         | 114.961        | 644.47          | 1806500.000   | 0.076  |
| 13       | Cyclohexane                                 | 116.761        | 648.22          | 50732000.000  | 2.137  |
| 14       | 2-Methylhexane                              | 121.261        | 657.59          | 30828000.000  | 1.298  |
| 15       | 2,3-Dimethylpentane                         | 122.221        | 659.58          | 27078000.000  | 1.140  |
| 16       | 1,1-Dimethylcyclopentane                    | 123.881        | 663.04          | 9241900.000   | 0.389  |
| 10       | 3-Methylexane                               | 125.001        | 667.66          | 54972000.000  | 2.315  |
| 18       | cis-1,3-Dimethylcyclopentane                | 129.941        | 675.65          | 16292000.000  | 0.686  |
| 19       | trans-1,3-Dimethylcyclopentane              | 131.601        | 679.11          | 15729000.000  | 0.662  |
| 20       | 3-Ethylpentane                              | 132.281        | 680.52          | 3924100.000   | 0.165  |
| 20       | trans-1,2-Dimethylcyclopentane              | 133.221        | 682.48          | 31891000.000  | 1.343  |
| 21       | Heptane                                     | 141.401        | 699.51          | 91772000.000  | 3.865  |
| 22       | Unknown                                     |                | 715.28          |               |        |
|          |                                             | 154.881        |                 | 10126000.000  | 0.426  |
| 24<br>25 | Methylcyclohexane                           | 155.201        | 715.65          | 84052000.000  | 3.540  |
|          | Cyclopentane, 1,1,3-trimethyl-              | 157.741        | 718.58          | 7621300.000   | 0.321  |
| 26       | Ethylcyclopentane                           | 164.221        | 726.06          | 18094000.000  | 0.762  |
| 27       | 2,5-Dimethylhexane                          | 165.501        | 727.54          | 6018100.000   | 0.253  |
| 28       | 2,4-Dimethylhexane                          | 167.001        | 729.27          | 9645000.000   | 0.406  |
| 29       | Cyclopentane, 1,2,4-trimethyl-, (1à,2á,4à)- | 171.321        | 734.25          | 12449000.000  | 0.524  |
| 30       | Hexane, 3,3-dimethyl-                       | 172.581        | 735.71          | 2353400.000   | 0.099  |
| 31       | Cyclopentane, 1,2,3-trimethyl-, (1à,2à,3á)- | 177.321        | 741.18          | 13368000.000  | 0.563  |
| 32       | Heptane, 3,3,4-trimethyl-                   | 179.801        | 744.04          | 3330700.000   | 0.140  |
| 33       | Toluene                                     | 182.721        | 747.41          | 129800000.000 | 5.467  |
| 34       | 2,3-Dimethylhexane                          | 189.601        | 755.35          | 10109000.000  | 0.426  |
| 35       | Hexane, 2,3,4-trimethyl-                    | 190.501        | 756.39          | 6611500.000   | 0.278  |
| 36       | 2-Methylheptane                             | 195.181        | 761.79          | 40207000.000  | 1.693  |
| 37       | 4-Methylheptane                             | 196.461        | 763.26          | 16649000.000  | 0.701  |
| 38       | Heptane, 3-methyl-                          | 197.601        | 764.58          | 4957800.000   | 0.209  |
| 39       | Heptane, 3-methylene-                       | 199.761        | 767.07          | 1103000.000   | 0.046  |
| 40       | 3-Methylheptane                             | 202.061        | 769.73          | 38490000.000  | 1.621  |
| 41       | trans-1,4-Dimethylcyclohexane               | 202.641        | 770.39          | 31339000.000  | 1.320  |
| 42       | Cyclohexane, 1,4-dimethyl-, cis-            | 204.421        | 772.45          | 11168000.000  | 0.470  |
| 43       | Cyclohexane, 1,1-dimethyl-                  | 209.501        | 778.31          | 4729100.000   | 0.199  |
| 44       | 1-Octene                                    | 213.041        | 782.4           | 8606800.000   | 0.362  |
| 45       | 1-Ethyl-1-methylcyclopentane                | 216.361        | 786.23          | 20618000.000  | 0.868  |
| 46       | Unknown                                     | 218.241        | 788.4           | 946680.000    | 0.040  |
| 47       | trans-1,2-Dimethylcyclohexane               | 220.861        | 791.42          | 14140000.000  | 0.596  |
| 48       | Octane                                      | 228.001        | 799.66          | 96996000.000  | 4.085  |
| 49       | Isopropylcyclopentane                       | 234.701        | 806.06          | 2878200.000   | 0.121  |
| 50       | cis-1-Methyl-2-ethylcyclopentane            | 245.161        | 815.95          | 2678600.000   | 0.113  |

## 4. Conclusions

Using the Pegasus GC-TOFMS, it is possible to reduce the analysis time of Naphthas by taking advantage of the acquisition speed and spectral continuity generated by the mass spectrometer. Method ASTM D5143 was implemented in this platform, but was modified to take advantage of the hardware/software capabilities of the Pegasus.

It has been demonstrated that Area percentage and Retention Index calculations can be easily done even when chromatographic coelutions take place. The strength of the Pegasus GC-TOFMS for the analysis of these complex mixtures lies in its automated data handling capabilities. Peak finding, spectral determination, library searching, and area % determinations can be accomplished very rapidly, improving analytical results and productivity.



LECO Corporation • 3000 Lakeview Avenue • St. Joseph, MI 49085 • Phone: 800-292-6141 • Fax: 269-982-8977 info@leco.com • www.leco.com • ISO-9001:2000 • No. FM 24045 • LECO is a registered trademark of LECO Corporation.