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THE SCIENCE OF WHAT'S POSSIBLE."

Woaters

o The aim of this study is to demonstrate the use of high resolution mass spectrometry (HRMS) coupled with ion mobility separation (IMS) in the determination of

INTRODUCTION

o Tienilic acid (TA) is a uricosuric diuretic found to induce immune-mediated hepatotoxicity in patients, while its 3-thiophene isomer (TAI) exhibits direct hepatotoxic
effects, and differential metabolism has been reported for these two compounds [1,2].

common and differential metabolites from rat urine samples obtained over a course of treatment with TA or TAI.

o Specifically, IMS-derived collision-cross section (CCS) measurements for proposed metabolites are compared with predicted values obtained through a machine-

learning model, providing an avenue for further metabolite structural identification support.

METHODS

SAMPLE INFORMATION:

Male Sprague-Dawley rats were dosed intravenously
with 250 mg/kg TA or TAI. Urine was collected at the 2, 6
and 24 hr. time points following dosing. Blank vehicle
dosed rat urine was also collected. Prior to LC-MS
analysis the samples were diluted 9:1 (v/v) with LC-MS
grade water. Additional sample information can be found
in [2] and [3].

LC CONDITIONS:

LC System:  ACQUITY UPLC® I-Class
Column: ACQUITY UPLC HSS T3 1.8um
Mobile Phase: A: 0.1% formic acid in water

B: 0.1% formic acid in acetonitrile
Run Time: 12 min.
MS CONDITIONS:
Instrument : Vion IMS QTof
lonization Mode: ESI”
Collision Energy (LE): 6 eV
Collision Energy (HE ramp): 35-55 eV
Scan Time: 0.10 sec
Acquisition Range: 50-1200 m/z
Drift Gas: N2
IMS Wave Velocity: 250 m/s
IMS Wave Height (ramp): 20-55V
Lockmass: Leu Enk (556.2766 m/z)
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STEP

A: Common TA and TAI metabolite and spectrum of TA+O show-
ing thiophene fragment used to deduce the site of metabolism.

RESULTS AND DISCUSSION

Metabolite identification in the urine samples indicated hydroxylation and other common biotransformations for both TA and TAI (A). Additional major me-
tabolites detected for TA and TAI are summarized in (B). TAI treatment produced unique cysteine metabolites, indicative of the production of reactive spe-
cies, not seen in TA treated animals. Identifications were supported by the presence of common fragments resulting from loss of the thiophene and carbox-
ylic acid groups, low-collision energy fragments representing the cysteinyl group loss for the TAI metabolites (as described in [4]), and the expected isotope
distribution patterns of the di-chlorinated TA and TAI molecules. Lastly, IMS-derived CCS experimental values were also compared with predicted values
obtained through a recently developed machine-learning model [5], exhibiting a strong agreement between experimental and predicted values (C).

| B: Rate and route of TA and TAl metabolism. |
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C: CCS (A2) is a gas-phase measurement occurring after ioniza-
tion, representing the average structural conformation of an ion as
it moves through the mobility cell. Experimentally derived CCS

dictive value obtained through a hybrid molecular

an avenue for continued exploration.

values for all metabolites proposed above are compared to a pre-

modeling/

machine-learning program (right). Use of predictive CCS is shown
here to correspond within a mean error of 1.74% for the reported
metabolites. Predictive values add further support to structural
proposals by confirming its likely gas-phase behavior, and present
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Metabolite lon Formula mz Ocl::s:r(vAt:;:l Hﬁzgingel
CcCs
Tienilic acid [C13HsCl,0,4S +H]* 330.96 166.1 167.2
Tienilic acid isomer | [C,3H;Cl,0,S +H] 330.96 166.4 167.0
Hydroxylation TA [C13HCl,05S +H]" 346.95 173.1 169.9
Hydroxylation TAl [C13HgCl,05S +H]" 346.95 174.8 169.9
-O (Cleavage) TA [C43H,Cl,05S +H]" 314.96 163.3 162.7
-O (Cleavage) TA [C13H;Cl,05S +H]" 314.96 164.6 162.9
Glycine conjugation |[C,sH,,CI,NOsS +H]’| 387.98 186.74 181.3
Hydar:::,)lﬂaatri):nand [C15H10Cl,O6S +H]" |  388.97 1823 1809
gﬁ::f::ﬁgai;dn [CiohsCL0S +HI'| 509.01 | 2118 2064
Hydroxylation and . 2075
glucuronidation [C19H16C1,044S +H]"|  522.99 206.86
Dihydro cysteine
conjugation [C16H15C1,06S, +H]"|  451.98 203.15 198.8
Dihydro-cysteinyl
glycine conjugation [C,gH,3CI,N,0,S, +H] 509.00 219.85 208.2

CONCLUSIONS

o Elucidation of TA and TAI metabolites illustrates differential routes of metabolism
m By acquiring concurrent IMS with the DIA approach employed, CCS values for all analytes are obtained
o Following structural proposal, CCS predictions derived from a modelling program showed strong correlation with experimentally
observed values, demonstrating the potential of predictive approaches in metabolite structural confirmation
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